- 博客(15)
- 收藏
- 关注
原创 【数据增强】彻底搞懂数据增强做了哪些工作?
数据增强是数据预处理中的常用技巧。例如使用图像增强技术来增加训练集的样本数量,从而提高模型的泛化能力。
2023-06-27 20:53:58 1118 1
原创 【深度学习】经典案例:猫狗大战(kaggle实战完整流程:数据集分割、预处理、模型搭建、模型参数保存、acc/loss可视化)
基于`tensorFlow`框架搭建神经网络,从零开始一步步完成数据读取、网络构建、模型训练和模型测试等过程,最终实现一个可以进行猫狗图像分类的分类器;并借助数据增强技术,例如旋转、翻转、缩放等,来增加数据集的多样性,从而提高模型的泛化能力和鲁棒性。
2023-05-31 17:09:32 8707 1
原创 【机器学习】最经典案例:手写数字识别(完整流程:DNN/CNN结构设计、模型参数保存、断点续训、acc/loss可视化)
使用`TensorFlow`框架,其提供了 `MNIST` 数据集的 `API`,利用tf.keras搭建卷积神经网络架构,进行模型训练、保存、训练结果可视化,实现对手写数字图像进行特征提取和模式识别。
2023-05-04 19:19:04 3987
原创 【千言-问题匹配】baseline全流程
在`kaggle`上跑的`baseline`,记录一下过程和遇到的问题。环境:可以选择比赛官方`Aistudio`,或者`colab/kaggle`等,因为数据集比较大。
2022-12-11 17:12:39 772
原创 【ubantu20.04安装教程】新手安装+基本操作
(一)下载安装VMware 16(二)下载安装ubantu20.04(三)初始配置1.语言、输入法2.查看ubantu版本3.第一次进入root模式需要配置4.最常用快捷键
2022-10-21 13:55:42 3842
原创 报错:Cannot interpret ‘<attribute ‘dtype‘ of ‘numpy.generic‘ objects>‘ as a data
问题是由numpy、pandas版本引起的,版本过低,无法将‘numpy.generic’objects>’的'
2022-07-20 14:14:08 3965
原创 【机器学习】knn(原理解析+代码实现)
KNN概述(K Nearest Neighbors) - 机器学习可分为:有监督学习、无监督学习、弱监督学习、强化学习。 - 有监督学习又分为:分类问题、回归问题。 - KNN主要解决的是分类问题。 - 其与K-means有相似之处,但K-means是无监督学习算法。...
2022-07-16 08:00:00 1092
原创 Pytorch安装教程+jupyter配置Pytorch环境
安装步骤小结:step1:前提:安装好anaconda和python3.7step2:创建Pytorch环境step3:安装Pytorch包step4:验证安装成功step5:在jupyter中配置Pytorch环境。
2022-07-13 13:35:31 22772 8
原创 【Jupyter Notebook】
jupyter kernel中添加虚拟环境anaconda中配置好的虚拟环境,在pycharm中应用方便,便于项目管理,如何将虚拟环境配置到jupyter notebook的kernel当中,步骤如下:1.在cmd中输入:jupyter kernelspec list,还未配置过的,列表中应该只有一条2.输入:conda install nb_conda,等待5.进入想要添加的虚拟环境,如我要往jupyter添加TF2.1(自命名)环境,输入activate TF2.14.输入:conda in
2022-03-01 11:00:38 758
原创 【Jupyter Notebook:设置自动跳转Chrome,设置启动默认指定文件夹。】
Jupyter Notebook:设置自动跳转Chrome,设置启动默认指定文件夹。1.设置自动跳转Chrome。开始–>设置–>应用–>默认应用–>浏览器选择默认Chrome。避坑:不要用网上的import,不好用,导致无法启动默认文件夹。2.设置启动时打开默认文件夹打开cmd–>在开始处:anaconda prompt中输入jupyter notebook --generate-config–>按所给文件位置找到jupyter_notebook_con
2022-02-25 18:03:15 780
原创 安装Tensorflow教程,注意事项,解决办法。
写在前面,安装步骤小结:step1:前提,已经安装好anaconda及python3.7。step2~6:准备工作,安装SDK及深度学习软件包。step6~7:安装tensorflow及注意事项,及验证安装成功。1、从开始处打开anaconda prompt2、输入conda create -n TF2.1 python=3.7,然后输入y3、输入conda activate TF2.14、输入conda install cudatoolkit=10.1,然后输入y5、输入conda
2022-01-10 15:30:26 1102
猫狗大战完整代码+详细文档+模型参数
2023-05-19
手写数字识别完整代码+详细文档+模型参数
2023-05-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人