深度学习方向第一周培训

学习目标:

一、 视频学习:

                          1.1人工智能 

                          1.2机器学习

                          1.3深度学习   

二、 代码练习:

                         2.1pytorch基础代码练习

                         2.2螺旋数据分类 


学习内容:

一、视频学习

1.1人工智能

定义:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。

应用领域:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划

发展阶段

人工智能的发展主要分为三个阶段:计算智能、感知智能、认知智能。

1.2机器学习

  传统的机器学习主要通过知识工程实现,通过构建专家系统 ,手工设计规则去处理数据,得到结果。该方法的优点:结果容易解释。缺点:依赖人的主观经验,构建过程比较费事,结果难以保证一致性和准确性。

  当代的机器学习主要通过计算机基于数据自动学习,从而得到最优模型。优点:信息处理效率高、结果可信度、准确率高,减少了人工参与。缺点:结果可能不容易解释。

  定义:机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。

  机器学习的研究方向主要包括决策树、随机森林、人工神经网络、贝叶斯学习等方面。


  机器学习主要通过模型、策略、算法三方面进行学习。首先,根据我们所需要解决的问题选择合适的模型,对问题进行建模,确定假设空间。例如:房价预测问题可以建立线性回归模型、多元线性回归模型。 其次,从假设空间中学习,确定目标(假设)函数。最后,根据目标函数选择求解最优模型的方法,计算得到结果。例如:在线性回归模型中我们可以选择梯度下降法、正规方程法来确定代价函数的最小值。

  监督学习:有训练样本(对数据进行标记),计算机根据标记数据去训练得到一个最优模型。主要分为两类问题:回归问题,例如:房价预测问题等;分类问题,例如:判断是否患病问题等。监督学习典型的例子是KNN、SVM。

  无监督学习:不对数据进行标记,计算机通过自学的方式对数据进行处理,得到最优模型。无监督学习典型的例子是聚类问题,例如:自动对新闻故事进行分类。

   二者区分:如果我们在分类的过程中有训练样本(training data),则可以考虑用监督学习的方法;如果没有训练样本,则不可用监督学习的方法。

1.3深度学习

  M-P神经元是基于人类神经元的多突触传递而研究出的人工神经元,允许多个输入,并根据连接权重(ωi)以及阈值(h)的预测进行输出。

  M-P模型的工作原理为:当所有的输入与对应的连接权重的乘积ω i *x i 之和大于阈值h时,y输出为1,否则输出为0。

  激活函数是用来进行非线性转换的。如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数。

 

   依据万有逼近定理,将线性分类任务组合后可以解决非线性分类任务。具体实现是通过将单层感知器嵌入带另一个单层感知器,成为多层感知器,进而解决非线性问题。当隐层足够宽时,即每层有足够多的结点,双隐层感知器可以逼近任意非连续函数,解决更为复杂的分类问题。

  神经网络学习如何利用矩阵的线性变换和激活函数的非线性变换,将原始输入空间投影到线性可分的空间去进行分类、回归。

  增加节点数:增加维度,即增加线性转换能力。

  增加层数:增加激活函数的次数,即增加非线性转换次数。 

  神经网络更深好or更宽好?

  •   在神经元总数相当的情况下,增加网络深度可以比增加网络宽度带来更强的网络表示能力:产生更多的线性区域。
  • 深度和宽度对函数复杂度的贡献是不同的,深度的贡献是指数增长的,而宽度的贡献是线性的。

   梯度下降就是找到使代价函数取得最小值时算法取的参数。

  • 改变x的值使得导数的绝对值变小,当导数小于0时候,我们要让目前x值大一点,再看它导数值。
  • 当导数大于0时候,我们要让目前x值减小一点,再看它导数值。
  • 当导数接近0时候,这个点使代价函数取得最小值,我们就得到想要的自变量x了。也就是说找到这个算法最优参数,使得拟合曲线与真实值误差最小。

 二、代码练习

2.1pytorch基础代码练习

  

2.2螺旋数据分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值