一种新型的激光炸弹,可以摧毁一个边长为 R的正方形内的所有的目标。
现在地图上有 N个目标,用整数Xi,Yi表示目标在地图上的位置,每个目标都有一个价值Wi。
激光炸弹的投放是通过卫星定位的,但其有一个缺点,就是其爆炸范围,即那个边长为 R的正方形的边必须和x,y轴平行。
若目标位于爆破正方形的边上,该目标不会被摧毁。
求一颗炸弹最多能炸掉地图上总价值为多少的目标。
输入格式
第一行输入正整数 N和 R,分别代表地图上的目标数目和正方形的边长,数据用空格隔开。
接下来N行,每行输入一组数据,每组数据包括三个整数Xi,Yi,Wi,分别代表目标的x坐标,y坐标和价值,数据用空格隔开。
输出格式
输出一个正整数,代表一颗炸弹最多能炸掉地图上目标的总价值数目。
数据范围
0≤R≤109
0<N≤10000,
0≤Xi,Yi≤5000
0≤Wi≤1000
输入样例:
2 1
0 0 1
1 1 1
输出样例:
1
一个R * R的炸弹最多可以摧毁的范围为R * R
同时如果R超过N的范围其实和R等于N+1的效果是一样的,所以R和5001取一个min,其实就是找一个R * R的矩阵,使这个矩阵的和最大,可以先求一遍二维数组的前缀和然后再枚举每一个边长为R的矩阵
#include<iostream>
#include<algorithm>
using namespace std;
int ss[5123][5123];
int n,r,x,y,w,nn=0,mm=0;
int main()
{
cin>>n>>r;
r=min(r,5001);
nn=mm=r;
for(int i=0;i<n;i++)
{
cin>>x>>y>>w;
x+=1;y+=1;
nn=max(nn,x);mm=max(mm,y);
ss[x][y]=w;
}
for(int i=1;i<=nn;i++)
{
for(int j=1;j<=mm;j++)
ss[i][j]+=ss[i-1][j]+ss[i][j-1]-ss[i-1][j-1];
}
int res=0;
for(int i=r;i<=nn;i++)
{
for(int j=r;j<=mm;j++)
{
res=max(res,ss[i][j]-ss[i-r][j]-ss[i][j-r]+ss[i-r][j-r]);
}
}
cout<<res<<endl;
return 0;
}