- 博客(4)
- 收藏
- 关注
原创 【MindSpore】Ascend310推理
本文主要是对MindSpore框架下实现的MMoE网络在Ascend310平台上进行推理流程的介绍。 总体流程 1.首先在Ascend910场景下,将保存好的ckpt文件使用export.py文件转换为MindIR格式。 2.将数据预处理为.bin格式 3.使用处理好的MINDIR格式的模型和预处理好的数据进行模型预测 4.计算评价指标 5.打印结果 推理过程涉及相关脚本 export.py preprocess.py main.cc postprocess.py export.py
2021-11-24 20:02:02
1302
原创 【经验分享】mindspore模型迁移
MMoE模型keras源码 https://github.com/drawbridge/keras-mmoe 所用census-income数据集下载地址 https://github.com/drawbridge/keras-mmoe 1.数据处理: 常用的数据集可以直接调用mindspore.dataset接口实现,非常的方便。其使用方法可在ms官网编程指南中查看。其他的数据集可使用mindrecord接口,生成mindrecord格式数据,读写非常高效,具有很好的性能,但是生成的mindre
2021-11-23 10:27:42
1835
原创 MMoE模型迁移
MMoE原始模型 来自github: https://github.com/drawbridge/keras-mmoe 准备工作 下载数据集: https://github.com/drawbridge/keras-mmoe 在迁移到ms时,需要将数据处理为mindrecord格式进行训练。需注意ms的数据保存格式为:data;label。 模型迁移 ms的init函数中需要传入需要的算子、层等。construct函数为网络的整体架构或计算过程。需要特别注意的是,要清楚算子是否需要初始化,(
2021-11-16 20:25:33
584
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人