要不要设置tokenizer.pad_token = tokenizer.eos_token? ——对pad_token和eos_token的分析 pad_token和eos_token在训练过程和推理中扮演的角色是不同的。 如何设置pad_token。能不能让pad_token=eos_token。 tokenizer.pad_token = tokenzier.eos_token.
【torch报错处理】RuntimeError: probability tensor contains either `inf`, `nan` or element < 0 RuntimeError: probability tensor contains either `inf`, `nan` or element < 0 报错解决,torch版本
【位置编码】【Positional Encoding】直观理解位置编码!把位置编码想象成秒针! PEpos2isin100002idmodelposPEpos2i1cos100002idmodelpos这里提供一个直观的理解方案,可以帮助你轻松理解为什么要如此编码。【转载注明出处】
【Hopfield 网络】 记忆和联想 Hopfield网络,因此为了在听到旋律之后快速找到对应的曲子,或者说肽链成为能量稳定的蛋白质,其过程依赖的必然不是搜索!而是一个更加自然的规律。这个规律对于肽链来说,就是根据自然物理法则的规律,不停的降低自己的能量!这个规律对于寻找曲子来说,则更为抽象一点,可以理解成对有噪声输入的还原!(1)现在听到的歌曲是一个小球,小球在一个广场(你的思维)上;(2)它在广场上的位置初始的位置就是他自身的旋律(包含你听到的外界的噪声且不完整);(3)小球不停的在重力(重力就是你的大脑的思考!
[草稿]关于冲击响应,低通滤波器和高通滤波器,响应曲线和功能的直观理解 躺在床上想着想着睡着了,醒了之后随便写下了点东西。很早学过的一些知识,重温觉得有趣了起来。写的内容很乱,也没翻书核对啥,也没啥数学,就是直观的一些理解。乱七八糟的权当是起床后落笔记录一下梦中之事。
事实验证文章分类 Papers Category For Fact Checking 一些关于事实验证领域证据召回,验证推理过程的文献综合整理分类(不是很严谨)。欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,有合作意愿的也欢迎!
【Huggingface】DataCollatorForSeq2Seq中的pad_to_multiple_of选项 【Huggingface】DataCollatorForSeq2Seq中的pad_to_multiple_of选项 ### 也就是说当pad_to_multiple被设置成None以外的内容时,通常是8或者16,max_label_length会被调节成设置值的整数倍,这样做的目的是方便N卡更高效利用计算能力。
【CUDA OUT OF MEMORY】【Pytorch】计算图与CUDA OOM 在实践过程中多次碰到了CUDA OOM的问题,有时候这个问题是很好解决的,有时候DEBUG一整天还是头皮发麻。最近实践对由于计算图积累导致CUDA OOM有一点新的看法,写下来记录一下。包括对计算图的一些看法和一个由于计算图引发错误的简化实例记录。
【PyTorch distributed】多卡训练原理简析与RuntimeError: Expected to mark a variable ready only once.报错分析 当一个bucket中的所有hook都被触发,意味着这个bucket中的变量的梯度都已经计算得到,Reducer便立刻开启横跨所有进程的异步的梯度平均。此时由于不同rank的计算图不一样,没有任何一个bucket会ready,自然任何一个bucket的allreduce也不会被触发,Reducer虽然会在所有bucket变成ready后等待各自完成allreduce操作,但是当所有进程的backward()已经完成梯度的计算,Reducer将不会等待还未进入ready状态的bucket。得到不同的随机参数。
前向网络,两层MLP,可以作为未归一化的Key-Value记忆结构 个key-value对,这个成对的kv就是记忆。每个key用一个d维的向量表示。以此分布查询key对应value的值进行聚合得到输出结果。如果去掉偏置,可以改写成。同样我们可以定义value矩阵。个key就可以构成一个参数矩阵。,我们可以轻松的计算输入向量在。传统的两层神经网络可以被写为。个keys上的分布(伪分布)
Pytorch_Geometric(PyG)使用DataLoader报错RuntimeError: Sizes of tensors must match except in dimension 0. 使用Pytorch_Geometric(PyG)时构建DataLoader,从DataLoader获取样本Batch时报错:RuntimeError: Sizes of tensors must match except in dimension 0报错原因是数据对齐错误,1个batch是多个样本的集合,在样本拼接成集合时出现错误,其规律如下:如何解决:...