ZILLIZ

The Most Widely-Adopted Vector Database.

  • 博客(839)
  • 收藏
  • 关注

原创 Milvus Week | Kafka 很好, Pulsar也不错,但WoodPecker才是未来

Milvus 架构的这一轮革新,不仅简化了整体系统设计,优化了成本结构,也提升了数据Freshness与故障恢复速度。Woodpecker 采用 “ZeroDisk” 架构,所有日志数据存储于云对象存储,元数据则由 etcd 等分布式 KV 系统管理,彻底消除了本地磁盘依赖,降低了运维压力,并提升了数据持久性和扩展能力。通过 Streaming Service,Milvus 实现了原生的数据订阅能力,移除冗余缓存、降低内存消耗、提升一致性读取的延迟表现,同时极大增强了系统的可扩展性与容灾能力。

2025-05-16 18:23:28 711

原创 Milvus Week | 脱离生产环境的Benchmark ,谁信谁就输了

这一点,在向量数据库Benchmark上尤是如此。在 VDBBench 中,我们专门测量这两个指标,从而揭示在真实场景中,95% 或 99% 的查询实际能达到的性能表现。每写入完 10% 的数据,就进行一次搜索测试(包含串行与并发模式),并记录相关指标,包括延迟、QPS 和召回率。在向量搜索中,速度很重要,但不是唯一的重点,如果没有准确率(recall)的配合,这种性能数据本身毫无意义。但是,不要迷信任何纸面数据,再细致的Benchmark设计,也永远无法覆盖所有真实场景中千变万化的客户需求。

2025-05-15 19:18:31 757

原创 一手测评|RAG总卡死?大模型给Embedding API 时延背了太多锅了

相比之下,步骤 2 中调用 Embedding API 的延迟,如果高达数百毫秒甚至数秒,就会成为用户能明显感受到的、阻塞整个流程的‘第一道坎’,因此常常是实际的性能瓶颈点。你不再需要在代码中分别对接各个厂商的 SDK,只需在 Milvus 中配置好 Function 并提供你的 API Key(Bring Your Own Key, BYOK),就可以轻松切换和对比不同模型在真实 Milvus 操作(如插入、查询)中的端到端性能表现。Embedding服务Provider提供的便利的背后,性能代价如何?

2025-05-08 18:08:08 700

原创 Milvus多租户实践:你的技术选型扛得住一夜爆火吗?

在超大规模 collection 集群中,随着数据的持续写入,segment 数量会达到百万级(例如,若系统中有 10k 个 collection,每个 collection 有 100 个 partition,则 segment 数量至少会有 10k * 100 个),因而使得系统触发的索引构建任务会达到数百万个,导致任务积压率持续升高,查询性能衰减,任务调度成为系统瓶颈点之一。该模型会持续监测任务执行状态,当检测到大量索引构建任务时,会开启并发调度,同时执行多个任务,以达到资源最大化利用的目的。

2025-05-07 18:52:46 620

原创 Office Hour(线上研讨会)丨如何让Milvus更快,从资源配置到索引参数

在此之后,我们会开设半小时(20:30-21:00)的自由讨论时间,交给大家自由延伸与交流。5月15日晚上20:00-21:00,Zilliz直播间,《如何让milvus更快,从资源配置到索引参数》的分享。报名进专属微信群,使用腾讯会议参会。

2025-05-07 18:52:46 162

原创 Milvus五一专场,致敬每一个为开源社区贡献力量的北辰使者们

大家好,我是北辰使者老Z,一个职业生涯覆盖了从最早的Red Hat、OpenStack,到K8s、Ansible等开源基础设施,再到近年来的AI大模型与向量数据库架构实践的运维与架构设计老鸟,平时的“生活只有工作”。而 Milvus 北极星计划旨在汇集和团结 Milvus 社区的热心用户及开发者,组成社区大使团队,根据不同朋友擅长的能力(Coding、写作、沟通、布道、活动组织等),在社区中分配职责,共同建设运营 Milvus 社区,为社区发展壮大探索方向。说起我和开源的缘分,其实是从2020年开始的。

2025-04-30 18:56:12 733

原创 一文读懂Milvus核心参数,十分钟解决80% 的配置问题

最后还需要强调一点,数据的可见性和 Flush 没关系,是由查询的一致性等级来决定的,之前社区里有不少朋友担心数据可见性的问题,每插入一次数据,都会调一次 Flush,导致系统整体性能非常差,并且影响稳定性。对于性能要求不严苛,但是成本比较敏感的场景,比如自动驾驶模型训练中的 corner case 图片搜索,超大规模知识库系统,我们可以利用索引量化或磁盘+内存的方式,在有限内存里装更多的数据,当然这样做的代价就是牺牲召回率或性能。根据机器配置情况,可以将这两个参数调大到 4G 或者 8G。

2025-04-23 20:01:16 1104

原创 Langchain 吐槽OpenAI根本不懂 AI agent和workflow?知识点全解析

它们通常以包含提示、模型和工具,以及一些参数。大多数人会把 LangGraph 描述为一个声明式框架,但其实在LangGraph ,虽然节点与边之间的连接是通过声明式方式完成的,但节点和边本身其实就是普通的 Python 或 TypeScript 函数。边可以是固定的,也可以是条件式的,因此即使整体结构是声明式的,但。文章中给出的反驳,同样干货满满,堪称是agentic system选型指南,可以快速帮助开发者们梳理清楚agentic system开发中的常见问题,以及相关业务构建逻辑,非常值得一读。

2025-04-22 20:04:00 1049

原创 直播预告丨Milvus如何让机器翻译更精准:术语校对的深度解析

4月24日晚上20:00-21:00,Zilliz直播间,沉浸式翻译团队。欢迎大家锁定Zilliz直播间,与我们一起用AI重新定义网文翻译!Milvus 在网文术语校对中的应用。点击下方预约,共享知识探索之旅!机器翻译中的术语约束问题。

2025-04-21 19:17:14 296

原创 风口|继MoE、MCP与A2A之后,下一个模型协作风口是MoA

MoA:一个三层系统,每层有六个提议者(Qwen1.5-110B-Chat, Qwen1.5-72B-Chat, WizardLM-8x22B, LLaMA-3-70B-Instruct, Mixtral-8x22B-v0.1, dbrx-instruct),并以 Qwen1.5-110B-Chat 作为聚合者。基于这些发现,作者提出了 MoA 概念。这显示了 MoA 方法的潜力,即最终的聚合器并非简单地从提议者的回复中选择其一,而是对所有提议者的回复进行汇总整合,从而生成一个更强大、更可靠的最终回复。

2025-04-21 19:17:14 933

原创 讨论|谁能统一Agent 接口?MCP 对比 A2A 、Function Calling

此外,对于函数的链式调用,Function Calling本身并不直接支持多步调用组合,模型只能一次调用一个函数,获取结果后如果需调用下一个函数,需要由应用逻辑将结果馈入模型下一轮对话,再触发下一个函数调用。MCP 的扩展性,则通过统一的接口标准,将复杂的M(个模型)×N(个外部工具对接)问题转化为M+N的问题:工具创建者只需为每个工具/系统实现一次MCP Server,应用开发者只需为每个应用实现一次MCP Client,各自遵循通用协议即可协同工作,接着,服务器处理请求并返回响应,告知任务的状态。

2025-04-14 18:59:43 961

原创 90%的DeepSeek一体机,都是拍脑袋交的“智商税”

单机版本的优势是简单上手快,短板也很明显,没有高可用能力,数据量增长到千万级,QPS 增长到几百以上,性能就会遇到瓶颈。而高可用和可扩展性,是 Milvus 集群版的天然能力,但是集群版依赖的 K8s环境,一体机几乎很难提供,很多套壳公司也不具备这个能力,所以,现实是,大部分一体机厂商仅仅满足于Docker单机版,不做容灾,只能“祈祷”机房不出故障、数据不暴涨。最过分的,是给客户甲的产品,改个名字,换个logo(是的,毕竟是私有部署,所以连UI都不用换)就卖给客户乙,美其名曰定制化,然后额外收费几十万。

2025-04-10 18:22:01 1023

原创 深度干货|万字长文解读向量数据库的前世今生(先码后学)

例如,在经过良好训练的词向量模型中,“king”(国王)和“queen”(王后)的向量表示通常比它们与“automobile”(汽车)的距离更近,从而反映出它们在语义上的相关性。而在对速度要求高于完美召回的场景中(如高吞吐量的推荐系统和大规模特征匹配),二值索引也能展现出优异的性能。向量数据库是先进推荐系统的重要基础。例如,在某些对准确性要求较高的应用(如医学影像分析、金融风控)中,召回率可能需要达到 95% 甚至更高,而在搜索引擎、推荐系统等场景中,80%-90% 的召回率可能已经能提供足够的用户体验。

2025-04-09 18:27:53 929

原创 放弃pgvector,Milvus 才是海量非结构化数据自动分片最优解

实际上,PG与Milvus的选择背后,不只是向量数据库如何选型这么简单,而是代表了一个技术团队的长期技术哲学思考:究竟是先快速上线搞定需求,还是将眼光放得更长远,考虑半年、一年甚至三年五年的长期需求。:在一开始,应该把所有数据分成多少片,几乎没人说得清。一开始看似低门槛的解决方案,发展到后期,随着数据量的增长,全都会变成惰性带来的技术负债:一个短择的技术决策,可能导致长期的遗患无穷。,将数据分布在多个服务器上,从而减轻单个服务器的压力,以更低成本,提高整体系统的性能和扩展性,并保证,在单一节点出现故障时,

2025-04-02 17:59:58 600

原创 先码后学|从Manus到DeepSearcher,2025年最值得关注的十大AI Agent

通过利用 GPT-4 的强大能力,AutoGPT 可以将复杂目标分解为更小的、可执行的任务,按顺序执行这些任务,并根据结果进行迭代,以实现预期的结果。每次对向量数据库中内容完成数据查询后,系统都会启动一个反馈(reflection)流程,然后在每一轮迭代结束时,智能体(Agent)会对查询到的知识进行评估,判断其是否足以解答初始提出的问题。然而,就像人类一样,Agent 需要可靠的记忆才能有效运作,这也是向量数据库之所以必要的原因,它为存储、管理和检索上下文数据提供了必要的基础设施。

2025-03-26 18:35:17 744

原创 Milvus×最新版DeepSeek v3:对标Claude,本地数据五分钟写网站

如何将它与RAG结合?在搭建好一个最基本的RAG之后,接下来,我们对原装版DeepSeek-V3-0324 以及结合了Milvus+DeepSeek-V3-0324的RAG版本做一下效果对比。另外,我们通过实验发现,相比前一段时间风很大的推理模型,作为非推理模型的新版V3,虽然不会在回答中给出详细的推理过程,但其答案生成仍展现了一定的逻辑与思考能力。与之形成对比,推理模型做RAG与Agent ,效果很好,但却会对一些简单的指令判断,做一大堆分析与反复思考确认,不仅消耗过多token,回答速度还慢。

2025-03-25 18:45:08 804

原创 Agent的安卓时刻到了!MCP协议下的Cursor与Milvus部署指南

通过MCP服务器,开发者无需深入了解Milvus的底层API细节,就可以轻松实现向量数据的实时查询、相似度搜索和数据管理等操作,极大地降低了向量数据库应用的开发门槛。下面这张图,这是不是你使用大模型的日常:无所不能的DeepSeek老师,能30秒告诉你量子力学的发展与演变,却不能告诉你如何买到清明节出去玩的最便宜的机票。服务器是MCP的核心,它们连接AI模型与实际数据源。甚至,还有人将其重要性与互联网时代http协议的发明相媲美——统一的接口标准,意味着更低的开发难度,撬动的是无限可能的生态开发潜力。

2025-03-19 18:27:42 1237 1

原创 爆火 | API终将淘汰,MCP+Milvus+LLM才是Agent开发新范式

去年11月,硅谷AI独角兽Anthropic正式推出了MCP——模型上下文协议,让开发者只需一次编写,就能为大模型对接不同的API、数据库与文件系统,极大降低了模型的配置难度。原因很简单,在做旅行规划的时候,大模型缺乏必要的天气、机票、铁路、导航、酒店等必要数据与工具的接入。Milvus不仅擅长管理海量数据,其高效的相似性搜索和可扩展的向量存储功能,更是让其成为AI Agent的理想之选。有了MCP,LLM就像装上了标准的type C接口充电,可以快速接入的任何支持MCP的工具。

2025-03-18 19:04:27 893

原创 向量数据库Zilliz x 西湖心辰:让Agent拥有情商

前言今年春晚,魔性转手绢的宇树,一夜之间爆火。灵活的四肢,精准的运动控制,整齐的列队,配合东北花棉袄与大红手绢,赛博新世界的大门就这么在最传统的除夕夜,向全世界打开了。于是,叠被子、摇奶茶、炒菜、拖地……普通人在思考如何让机械牛马解放普通牛马。投资人、地方政府、创业者们,则开启了又一轮以杭州为关键词的城市大反思。但业内的讨论,已经在思考机器人的下一步:给硬件封装灵魂,有市场吗?而关于这场讨论,话题...

2025-03-13 18:48:59 620

原创 干货汇总|十大DeepSeek官方集成推荐

前言官网版DeepSeek用不上,二次开发版DeepSeek挑花眼?是谁还不知道,DeepSeek官方已经对优秀二次开发项目做了合集,还放在GitHub开源了?Awesome-Deepseek-Integration指路:https://github.com/deepseek-ai/awesome-deepseek-integration这里面的项目类型主要包括了应用程序、AI Agent框架、A...

2025-03-12 18:01:02 1392

原创 通义QwQ-32B+Milvus,消费级显卡布满血大模型与RAG的时代来了!

前言最近,通义开源的QwQ-32B模型可谓是火的一塌糊涂。作为一个中型推理模型,QwQ-32B只有320亿参数,但却在多个基准测试中展现出优秀的推理能力,几乎直逼满血版DeepSeek R1,在数学计算、写作与代码编程方面的表现更是相当不错。最重要的是,QwQ-32B不仅性能强大,还极其“亲民”,它体积小、推理快,支持消费级显卡部署,像RTX 4090这样的显卡就能轻松运行,非常适合普通个人开发者...

2025-03-11 18:01:47 658

原创 向量数据实战:斗图总是慢人一步?谁还没学会AI表情包检索

前言此刻正阅读推文的你,是不是经常网络沟通词不达意?是不是经常因为不小心说错话懊悔不已?而且,经常在想要对朋友表达关心之时,只会说:早上好,吃了吗,今天怎么样?语气生硬的像个机器人。没关系,没什么问题是一个表情包搞不定的!但擅长网络冲浪的你可能在运用过程中会发现:我的表情包太多了,有时想找到想要的那张表情包要扒拉好半天才可以,严重影响我秒回!虽然微信/QQ有表情包联想功能,但里面的图怎比得过自己精...

2025-03-06 18:23:21 611

原创 DeepSearcher深度解读:Agentic RAG的出现,传统RAG的黄昏

前言准备好迎接搜索3.0时代了吗?随着这几年AI技术的革新,“搜索应用”成为了AI应用层的第一个共识。从海外的OpenAI、微软Bing Copilot、Perplexity AI,再到国内的豆包、Kimi,都是这一共识下的代表产品。技术上,从传统的关键词检索,到RAG,大家已经不满足于只是生成对应的简单回答而是期待大语言模型能够更好地应用于企业级场景,产生更大的价值。不久前,OpenAI推出了最...

2025-03-04 18:42:47 1226

原创 14家企业非结构化数据治理秘籍全公开,《Zilliz 向量数据库白皮书&案例合集》正式发布...

开工第一个月,相信大家都在忙着做工作规划,做立项,争取HC,抢预算。毕竟过了一个被deepseek冠名的春节,各行各业都开启了新一轮的大模型落地需求。但大模型如何结合业务?RAG如何落地?非结构化数据如何治理?还有,架构盲区如何破?选型捷径哪里找?部署深坑怎么躲?老板要人效比提升一倍,财务批的预算却直接减半。问题一个接一个,开工才一月,立项方案已经改到第8版。别担心,别人还在踩坑,打开本条推送的你...

2025-02-27 19:07:56 1071

原创 开源|十天1500+star,深度解读DeepSearcher核心技术架构

前言【捷报速递】????不久前我们推出了DeepSearcher开源项目,十日狂揽1500 Stars!感谢全球开发者和各位读者们的火热支持!尝鲜链接:https://github.com/zilliztech/deep-searcher与此同时,我们的内容在hacknews上一经推出,也成功登顶TOP3关注。在社区中,我们也收获了很多的激烈讨论。比如,很多开发者表示,相比OpenAI推出的报告生成神...

2025-02-26 19:01:39 1793

原创 别搞Graph RAG了,拥抱新一代RAG范式DeepSearcher

前言上午刚开心的在朋友圈庆祝了《哪吒2》登顶全球IMAX票房历史前八;下午老板就说,小王啊,你这么懂,就拿DeepSeek做出一个《上古神话中龙族意象在流行文化中的演变》吧,记得下班前给我……对了,记得要融合孙悟空和哪吒的痒点,结合《山海经》到《哪吒》的爆款打法,利用古典文学理论与当代精神分析双重赋能,打出我们的独特用户爽点(省略八百字)老板的要求百爹齐放但时间转换器从哈利波特走向现实之前,打工人...

2025-02-25 19:11:03 1212

原创 官宣:Zilliz Cloud上线BYOC部署,为强合规监管行业带来开源与SaaS之外的第三种选择...

自ChatGPT推出以来, AI 的应用格局发生了巨大变化。根据麦肯锡2024年全球AI调查报告,企业AI采用率已从2023年的50%提升至72%,其中超半数受访企业将AI应用于多个业务职能(2023年这一比例不足1/3)。而在这些大力推进AI落地的企业中,向量数据库已成为技术栈的关键组件,Zilliz Cloud等SaaS服务也因其易用性成为主流选择。然而,在金融、医疗等受严格监管的行业,合规要...

2025-02-24 18:04:30 782

原创 DeepSearcher第三弹:如何让DeepSeek告诉你特斯拉还能不能抄底

前言特斯拉现在的股价相对于去年12月的历史高点已经暴跌了超过37%。那么特斯拉当下到底是被高估还是低估?能不能抄底?如果抄底,合理的买入与卖出价位又是多少?在股市,七赔二平一赚是常态。对亏钱的普通人来说,交易软件上乱七八糟的一堆数据指标就已经够让人头晕脑涨,公司发的财报更是如天书一卷。那么,AI能够以专业角度帮我对一家企业做出客观分析吗?答案是可以的。比如Deepseek的母公司幻方,就是量化起家...

2025-02-21 19:13:47 1027

原创 开源!DeepSeek+DeepSearcher+硅基流动,打造私有化部署DeepResearch

前言不久前,OpenAI 推出了基于全网权威信源搜索打造的报告生成神器Deep Research ,引发全球关注。然而,Deep Research月费200美金,性价比并不算高;此外,针对不同任务,各家大模型各有所长,只绑定其中一家最终效果往往并不理想。最重要的是,企业级场景中,真正有价值的数据,比如企业场景中的项目文档、研发的CAD图纸,多以非结构化形式储存在本地。那么,企业如何把本地数据数据与...

2025-02-20 19:02:43 816

原创 手把手教你如何把代码库从 ES 迁到 Milvus

作为过去十年中最具影响力的开源搜索引擎之一,Elasticsearch 以其高性能、高扩展性和分布式架构而在搜索、分析中广受欢迎,常常被用于如电商平台的商品搜索、日志分析、外卖平台餐厅推荐、金融交易行为识别等等场景之中。然而,ES虽好,在生产环境中却常常面临以下挑战:1.数据更新与索引代价高:Elasticsearch 在处理写操作时开销较大,尤其是在大批量数据更新场景中。其写入、索引构建和查询未...

2025-02-18 18:30:50 911

原创 观点|从Deepseek-R1看2025模型的未来

年初以来,DeepSeek 的爆火引发了行业震动,各大模型厂商纷纷预告下一代大模型的研发计划,包括OpenAI的 GPT-4.5和 GPT-5、Anthropic 的 Claude 4,以及国内众多 AI 公司也开始重新聚焦技术研发。本篇短文将探讨几个值得关注的赛道,看看今年是否会迎来技术落地。01COT模型的演进:探索Latent Space推理当前,OpenAI 的 O1 系列模型和 Dee...

2025-02-17 18:42:17 340

原创 官宣,DeepSearcher开源:告别传统RAG,私有数据+Deepseek,打造本地版Deep Research

前言近日,Open AI的Deep Research(深度研究)功能一经推出,迅速受到诸多关注,通过将大模型+超级搜索+研究助理的三合一,金融机构一键生成报告、科研党一键生成综述成为可能。但囿于企业场景私有化数据的敏感性以及成本问题,如何基于Deep Research做开源的本地化部署,成为不少人关心的问题。在本篇文章里,我们将对市面上复现Deep Research的各类开源项目做一个简单的分析,...

2025-02-13 19:06:24 796

原创 美国连锁百货Nordstrom:推荐系统如何做到让你刚买跑鞋,就推防晒

1994年,美国明尼苏达大学的实验室里,一群工程师在测试一个名为“Group Lens”的系统。当它第一次通过协同过滤算法,从浩如烟海的新闻组帖子中挑出用户可能感兴趣的内容时,一扇名为推荐算法的大门,自此彻底打开,没人想到这项技术会在三十年后的移动互联网时代,成为支配全球50亿人注意力流向的“隐形之手”。字节跳动用推荐引擎将人均单日内容消费时长从15分钟拉升至140分钟,Instagram用算法推...

2025-02-12 18:45:52 691

原创 总是深夜报错?这份Helm版Milvus分布式集群离线部署教程请收好

引言"又是一个通宵,就为了部署离线Milvus集群,结果ImagePullBackOff又报错了,镜像拉不下来,证书过期了,存储类找不到,etcd集群起不来……相信这是不少开发者在离线环境部署Milvus时,都遇到过的痛苦经历。平心而论,Kubernetes固然强大,但陡峭的学习曲线和繁琐的配置让人望而生畏。尤其是对于Milvus这样的分布式向量数据库,涉及etcd、MinIO等多个组件的协同部署...

2025-02-11 19:17:46 774

原创 教你本地复现Deep Research:DeepSeek R1+ LangChain+Milvus

本文仅作基础复现逻辑演示,如果对升级版复现方案感兴趣,欢迎移步github抢先尝鲜:https://github.com/zilliztech/deep-searcher金融机构、律所、科研党的福音来了!不久前,OpenAI 新推出了一项名叫 Deep Research(深度研究) 的功能,迅速风靡全球。我们可以将其理解为大模型+超级搜索+研究助理的三合一。在这项功能里,用户输入查询问题后,只需要...

2025-02-10 18:56:58 733

原创 低成本+高性能+超灵活!Deepseek 671B+Milvus重新定义知识库搭建

“老板说,这个项目得上Deepseek,还得再做个知识库...”还有哪个开发者,最近没听到这样的抱怨?Deepseek爆火,推理端的智能提速,算力成本急剧下降,让不少原本不想用大模型,用不起大模型的企业,一夕之间全部拥抱AI,开启了降本增效。在这个过程中,对于大部分拥有优质私有数据,敏感数据的企业来说,如果不想数据泄露,那么部署本地知识库,就成了拥抱大模型的必经之路。可是当你真正开始调研的时候,就...

2025-02-08 18:34:36 1537

原创 Milvus 存储设计揭秘:从数据写入到 Segment 管理的全链路解析

作为一款云原生向量数据库,Milvus 的高效查询性能有赖于其独特的存储架构设计。然而,在实际使用过程中,许多社区用户常常会遇到以下问题:为什么频繁调用 flush 后,查询速度会变慢?数据删除后,磁盘空间为何依旧无法及时释放?查询延迟有时为何忽高忽低?这些现象的背后,通常都与 Milvus 的核心存储单元——Segment 的处理机制密切相关。Segment 是 Milvus 数据持久化的最小单...

2025-02-06 18:26:25 950

原创 服务器繁忙?10分钟本地部署DeepSeek+Milvus,增强版不排队!

引言过去一个月的DeepSeek有多火?Sensor Tower数据显示,在其APP在最新的R1模型发布后,DeepSeek的前 18 天内下载量达到 1600 万次,几乎达到ChatGPT同一数据的两倍,不仅如此,DeepSeek还在全球140个国家的APP榜单中名列下载量排名第一。刚刚收工的国内打工人,更是摩拳擦掌,期待着DeepSeek在新的一年成为自己新的AI牛马。然而,暴涨的流量+层出不...

2025-02-05 14:31:27 1451

原创 放弃ES,用向量数据库构建网站AI查询助手才是王道

技术开发过程中,你是否也经常面临这种困境:产品经理和老板催着快速交付结果,但开发过程中遇到的技术文档复杂又臃肿,对于一个新人来说,想要直观快速的了解开发平台上的各种功能和特性难如登天。当然,多数平台都在其技术文档中提供基于ES的基本搜索功能,开发者输入关键词,平台就能提供一系列相关文档来回答问题,但这种基本搜索功一般都是基于关键词,做精准匹配,故而难以理解我们查询中的真正语义,从而导致返回不相关或...

2025-01-23 19:06:12 919

原创 XLNet+Milvus:比BERT还聪明的语义理解模型到底是怎么工作的?

导读近些年来,在自然语言理解领域,最火的模型是什么?XLNet当仁不让。自2019年《XLNet: Generalized Autoregressive Pretraining for Language Understanding》发布以来,目前论文引用次数已经超过10661次,被业界、学界广泛认可。(另外,值得一提的是,本篇论文的一作,正是如今国内最火的大模型创业公司月之暗面创始人杨植麟;其并列...

2025-01-22 18:46:47 639

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除