ZILLIZ

The Most Widely-Adopted Vector Database.

  • 博客(905)
  • 收藏
  • 关注

原创 Milvus+印度最大电商平台,如何打造服务两亿月活用户的商品比价系统

举个中文环境的例子,同一台洗衣机,商家A的标题是“全自动10kg变频滚筒”,商家B的标题是“10公斤变频滚筒洗衣机 静音节能”,对应的图片分辨率更是从300x300到2000x2000不等,甚至有商家用好几个角度的实物图的情况下,有的商家只用示意图。也是因此,在服务第三方商家、给自营产品定价时,比价系统的建设,举足轻重。也是因此,比价服务不仅要在平台内找相似款,还要监控全市场动向,提供竞对情报、平台动态定价建议,并通过跨目录匹配,精准识别自家平台上的空白细分品类,助力商家优化商品结构。

2026-01-27 18:06:06 324

原创 Claude通过Cowork实现模型主动记忆,要如何复现?我们还需要RAG吗?

指的是短期、非持久化记忆,仅在会话启动时注入一次,会话结束后销毁,主要用于让模型适配当前场景(如移动端简化回复格式),不影响长期记忆。,是长期、可编辑的核心记忆,用于记录用户稳定属性(,如姓名、职业目标、过往经历、项目成果、学习偏好),每次对话都会强制注入。具体来说,模型会选择性的记住我们每次与它交互的过程,以及产生的结论,这些数据可以被实时写入、快速检索、并且以短期记忆、用户属性、长期记忆等形式被分门别类的保存,然后被主动复用在下一次的会话中。整个过程的核心是检索,而检索是只读的,不会往数据库里写东西。

2026-01-26 18:06:13 551

原创 深度解读:从Two Sum到 Kafka 再到Milvus与iceberg,数据库寻址中,计算永远优于查找

高延迟的访问动作,哪怕多一次,都是致命的性能损耗。查询时,只需读取对应 Segment 下拆分后的指定 Parquet 文件,结合字段拆分存储+Parquet 的列裁剪特性,只读取业务需要的字段,无需读取全量数据,也无需加载无关字段的文件。写入时花少量成本收集文件的min/max、分区等统计信息,读取时就能用这些信息做前置判断,精准跳过不可能命中的文件,这是计算的极致体现。,它把所有文件的元数据(目录树、文件→块的映射、块→数据节点的映射)全部加载在内存中,而且这些元数据的核心存储结构,就是我们上文讲的。

2026-01-20 18:13:32 346

原创 熠智AI+Milvus:从Embedding 到数据处理、问题重写,电商AI客服架构怎么搭?

比起单纯使用RAGflow的技术框架,我们在Milvus基础上设计了更加灵活集中功能组件的方案,让商品在多种业务场景下检索的召回率大大提升,在商品检索的召回率提升至95%。如前面困境所说,用户的 Query 实际是多种多样的,有简单的 Query,也有指代不明的 Query。Milvus对检索精度极高的掌控力以及原生支持的混合检索的能力,以及极高的性能扩展性和社群活力,挖掘出了我们产品更大的潜力。,借助Milvus及Agent的能力实现自定义表格的检索功能,既保证了查询的精确性,也保证了语义检索的准确性。

2026-01-19 18:08:32 322

原创 官宣 | Milvus 2.6云上GA:三层存储降本85% 、速度快ES 4-7 倍,多数据类型支持

在多个向量代表一个实体的场景中(如电商场景,一个商品可能包含多个角度的图片和描述),Struct 允许将不同类型的数据(如标量、向量、字符串等)组织成一个结构化的对象。从场景角度出发,该方案非常适配冷热数据二八分(热数据占比不到20%,但贡献80%以上访问的)的长尾场景,比如电商产品搜索、企业文档库、新闻媒体库等冷热数据分明的场景。这就导致一个尴尬的结果:即便大部分资源处于闲置状态,:社交平台的历史内容向量库中,90% 的查询集中在最近 7 天产生的内容上,而归档内容(占总量的 95%)几乎不会被访问。

2026-01-15 18:06:26 766

原创 官宣,Milvus开源语义高亮模型:告别饱和检索,帮RAG、agent剪枝80%上下文

Open Provence好的一点是,它的数据来自公开的问答数据集,然后使用了一个小的LLM,对句子相关度进行标注,并生成 silver label(银标签)。多语言方面,中英文都是重点优化语言。目前,市面上也已经出现了一些能够初步解决这些问题的模型,但它们要么只支持英文,要么上下文窗口太小(512 token),要么协议不友好(不允许商业使用)。目前,Semantic Highlight模型已经开源,MIT协议,可以放心用在商业项目中,也欢迎大家基于这个模型的二次开发和改进,让开源的力量薪火相传。

2026-01-14 18:00:33 684

原创 索引选不对,成本贵十倍!ScaNN就是电商推荐的最优解

而ScaNN对这个过程进行了修改,首先它提出了loss的概念。loss和上面的量化误差略有不同,这个loss指的是两个向量的实际距离和使用量化方法计算的近似距离之间的误差,ScaNN主要针对的是IP距离,IP距离的误差和查询向量的分布可以用公式描述。首先这里假设x是q1的近邻的话,那么x和q1的方向是接近的,所以x的平行分量可以近似认为和q1也是平行的,那么这个平行分量会让误差增大。下图是一个二维空间下的例子,说明平行分量带来的误差是更大的,会导致最后近邻结果的错误,所以应该施以更严厉的惩罚项。

2026-01-13 18:23:50 615

原创 索引选不对,成本贵十倍!ScaNN可否是电商推荐的最优解

而ScaNN对这个过程进行了修改,首先它提出了loss的概念。loss和上面的量化误差略有不同,这个loss指的是两个向量的实际距离和使用量化方法计算的近似距离之间的误差,ScaNN主要针对的是IP距离,IP距离的误差和查询向量的分布可以用公式描述。首先这里假设x是q1的近邻的话,那么x和q1的方向是接近的,所以x的平行分量可以近似认为和q1也是平行的,那么这个平行分量会让误差增大。下图是一个二维空间下的例子,说明平行分量带来的误差是更大的,会导致最后近邻结果的错误,所以应该施以更严厉的惩罚项。

2026-01-13 18:23:50 270

原创 都有混合检索与智能路由了,谁还在给RAG赛博哭坟?

需要强调的是,若仅评估最终答案质量,会导致问题定位失效。无论是依赖大模型全量加载上下文,还是沿用传统RAG模式,最终都难以实现输出质量的稳定提升,核心症结在于两者均存在无法规避的底层检索质量问题,且这些问题在企业规模化落地场景中会被进一步放大。二是检索失效,面对复杂问题时,原始查询表达往往不够精确,容易导致检索效果下滑,同时同义词、多语言表达的匹配失败,也会直接造成召回率不足。,全量加载token不仅浪费算力,大模型本身的注意力也是有限的,过长的上下文,只会导致上下文输出时模糊重点,反而导致质量下滑。

2026-01-08 18:04:55 247

原创 GUI都流行四十年了!数据库操作怎么还和DOS一样难搞?

Milvus 节点的任务管理页面,包含五种任务类型:QueryCoord 任务、压缩(Compaction)任务、索引构建任务、Import 任务和 Sync 任务。除了版本号外,系统还详细记录了代码的Git提交版本号、Go语言运行环境信息,以及系统的构建时间和部署创建时间,这些时间戳帮助管理员追溯系统的部署历史。Attu可以解决大部分的日常管理场景,它能让你从写脚本操作解放出来,把时间花在更有价值的事情上——比如优化RAG的召回策略,设计agent架构。甚至只是切换不同环境的数据库,都要手动改配置。

2026-01-07 18:33:09 274

原创 转 | 当 Vector Database 还不是主流时,这家公司(Zilliz)看见了未来

甚至今年,他脑子里也不断冒出新的想法,如果不做向量数据库,他可能会去做一个 agent 的 sandbox,让它们在更安全、更高效的环境中运行。从历史角度看,向量数据库的发展路径也印证了这一判断。与其说这是一次追逐风口的决定,不如说是一次基于数据库工程直觉的判断:如果AI会落地千行百业,而向量搜索会成为 AI 系统的核心能力,那么它迟早需要一套真正的基础设施来承载,而不仅仅是零散的算法调用。最后,他建议开发者保持持续评估的习惯,嵌入模型、重排序模型和搜索算法的演进速度极快,半年不更新,往往就意味着落后。

2026-01-05 18:10:31 984

原创 ChatGPT VS Claude ,Agent记忆用对话压缩还是RAG按需检索

指的是短期、非持久化记忆,仅在会话启动时注入一次,会话结束后销毁,主要用于让模型适配当前场景(如移动端简化回复格式),不影响长期记忆。,则是长期、可编辑的核心记忆,用于记录用户稳定属性(,如姓名、职业目标、过往经历、项目成果、学习偏好),每次对话都会强制注入。有时是纯语义检索(之前讨论的性能优化方案),有时是纯时间检索(上周的所有对话),有时是复杂组合(三个月内关于 Python 且提到 FastAPI 的讨论)。必须支持存储计算分离,热数据在内存、冷数据在对象存储,按需加载。(不包含助手回复);

2025-12-24 17:57:28 1014

原创 短语检索不等于BM25+向量检索| Milvus Phrase Match实战

它能让你的系统从只能简单理解语义,升级为 “必须包含某短语 + 带语义理解 + 可控 + 可解释”的可落地产品。要匹配同样结构的短语,中文通常需要更大的 slop,数值也更“稀疏”(例如 1、3、5、7…❌ BM25没有词序意识:只能找“connection”, “peer”,词序全乱。——slop 都是在控制“短语中各个词之间允许多远的距离、是否允许插词/倒序”。例如英文用 2,中文可能要 5 才能覆盖到同一类倒序+插词情况)。2. 你用了“英文习惯”的 slop 上限,对中文来说还远远不够。

2025-12-16 18:30:03 420

原创 如何优化英伟达CAGRA,实现GPU建图+CPU查询,成本效率兼顾| Milvus Week

其中,NN-Descent(Nearest Neighbor Descent)的核心是:如果节点u是节点v的近邻,且节点w是节点u的近邻,那么w有极高概率也是v的近邻,通过这种传递性可高效挖掘节点间的近邻关系。在每轮迭代中,为每个节点收集其当前邻居及邻居的邻居,形成候选邻居池,计算候选节点与目标节点的相似度。这种剪枝机制的优势在于,每条边的冗余判断仅依赖于其两端节点与共同邻居的距离计算,无跨边的数据依赖关系,可通过GPU批量并行执行,在不损失检索精度的前提下,将。88.9 倍性能飙升!

2025-12-08 18:18:00 874

原创 88.9 倍性能飙升!JSON Shredding 让 JSON 查询告别全表扫描| Milvus Week

如果你的查询条件没有被单独成列,那基本表明这些要查询的键值对是稀疏的,系统直接在Shared 列中查找,由于已经有基于Key 的倒排,也能很快定位这些查询Key 哪些行中,过滤大部分没有命中的行。Json 中的任意一个Key 都会被分析处理,对于查询具有较强的通用性,可以覆盖用户的所有查询,不需要用户自己创建key,也不需要提前构建索引等。对于稀疏的一些键值对,系统会将其汇总全部放在一列共享列中,并对其做一些优化,针对其稀疏性,建立key 的倒排索引,实现对稀疏值的快速过滤。:将所有可能的字段提前定义好。

2025-12-01 18:10:28 810

原创 写在 Milvus4 万 Star 之际:Zilliz这七年如何走来,又要去往何处?

2024年,Milvus入选Forrester向量数据库"领导者象限",Star突破4万星的时刻,我们更加确信:AI基础设施没有弯道超车,Zilliz八年磨一剑的坚守,正是Milvus持续领跑的核心密码。从金融、制造、医疗,到政务、教育、运营管理,任何场景中非结构化数据的理解和利用,都能借助Zilliz Cloud的能力,立刻挖掘释放。2017年Zilliz成立时,那时候,行业还没有向量数据库的概念,我们率先提出了那个关键问题:向量逐渐成为AI时代非结构化数据的通用语义,那么我们究竟要如何高效的管理它?

2025-11-28 18:07:02 603

原创 RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

目前,主流的架构范式是使用专门的多模态编码器来处理特定类型的数据,例如使用CLIP(Contrastive Language-Image Pre-training)模型来处理视觉信息,或使用CLAP(Contrastive Language-Audio Pre-training)模型来处理音频信息。例如,N-CRITICS框架采用基于集成(ensemble-based)的评估方法,让多个不同的模型或同一个模型的不同实例对初始输出进行评估,并汇总它们的反馈来指导精炼过程,从而获得更全面、更独立的评价。

2025-11-26 18:13:34 357

原创 RAG效果要提升,先搞定高质量Context Pruning

这样训练出来的模型,既能判断文档相关性,又能精准地做句子剪枝:推理时,Provence会给每个词打分,然后按句子聚合:如果一个句子里标记为1(相关)的词比标记为0(无关)的词多,就保留这个句子,否则就删掉。(Precision 62.35%,Recall 36.98%),在三个模型中相对较弱,显著低于Provence和XProvence,说明在out-of-domain场景下,模型输出的分数校准和泛化能力还有提升空间。更重要的是,这样生成的问题不会出现在任何模型的训练数据中,能够真实反映模型的泛化能力。

2025-11-24 18:18:50 349

原创 月活11亿的Reddit ,怎么选向量数据库:Pgvector、Redis、Milvus、Qdrant

最后,两款方案其实都满足了我们大部分需求,但考虑到Reddit 是一个依然在高速增长的平台,且未来的数据体量与运维难度还将节节攀升,选择Milvus 的更强扩展性,能让整体运行更放心,也更适配Reddit 公司的情况。最后,每个方案的总分会用方案在某项需求的得分乘以这项需求的权重,再加起来(比如 Qdrant 在 “重排序 / 分数合并” 这一项得 3 分,权重是 2,那这项就是 6 分,所有项都这么算再求和)。,一同进步,开源让客户自身也能深度参与、贡献代码的方案,这样一旦遇到问题,也自主快速修复。

2025-11-20 17:59:07 1178

原创 Milvus 落地顶级汽车资讯平台:如何支撑易车上亿用户的搜车需求?

(仅做变更数据同步,不做全量数据同步,不会影响业务),通过 Flink CDC 抓取 MySQL、SQL Server、MongoDB 等业务数据源变动,经 Kafka 传输、Flink Job 处理拼接、embedding 后,秒级推送至 Milvus 集群,延迟从 1 天降至秒级。对待召回数据生成相似问,提升召回率。,将文档、网页、图片等多源数据的清洗、加工、向量化封装成自动化任务,不仅保障了数据逻辑的一致性,还能充分利用大数据集群资源,提升数据处理效率,为 Milvus 提供了高质量的向量数据输入。

2025-11-18 17:57:26 563

原创 沃尔沃RAG实战:企业级知识库,早就该放弃小分块策略

此外,对于Milvus的选型,沃尔沃也没选择比较新的 PyMilvus v2 SDK 及其内置的embedding集成功能,而是选择了 SDK v1 中基于collection的旧版本,从而保证团队能够设计详细的元数据结构,并明确定义每种文档的存储、索引和检索方式。此外,针对格式繁多的非结构化数据,Milvus 支持的字段类型多达 64 种,这让沃尔沃不仅能存储嵌入向量,还能存储丰富的元数据 —— 从文档类型、来源到部门级分类等关键信息,覆盖全面。理由是,他们觉得较短的片段能带来更高的精度。

2025-10-29 18:16:00 1104

原创 先分块再向量化已经过时!先embedding再chunking才是王道

仅需调整 3 个核心超参数(最大分块大小、一二句之间的最低语义相似度需求、新句子与块内句子最大相似度的最低门槛),且超参数逻辑与分块大小自适应 —— 分块规模越大,新句子纳入的阈值越高。:计算当前分块 C 内所有句子向量间的最小 pairwise 余弦相似度,识别分块内语义最不相似的句子对,衡量分块内句子的关联紧密程度,进而判断新句子是否与分块内句子足够相似。核心决策逻辑为:若分块 C 内的最小相似度小于新句子与分块 C 的最大相似度,则新句子加入分块 C,否则开启新分块。(衡量新句子与分块的适配度);

2025-10-28 17:57:42 858

原创 DeepSeek-OCR解读:视觉如何成为长上下文压缩的新思路

更重要的是,在计算效率层面,会将在线处理复杂度大幅降低。而 DeepSeek-OCR 通过 文本→图像→视觉 token的转换,直接将计算基础从文本 token 转为视觉 token,相当于用更低复杂度的载体重构问题。例如处理含折线图的财报时,视觉 token 可保留数据趋势,解码器能直接输出可编辑的 HTML 表格,避免传统方案仅能提取图下文字说明的局限。简单来说,用视觉模态作为长上下文的压缩载体,DeepSeek-OCR在保证精度的同时,可以实现模型算力与效率的突破。

2025-10-22 18:54:15 1238

原创 大模型落地,已经走到了用上下文工程续命时刻

当你的AI应用需要从海量上下文中快速找到最相关的信息时,这种性能表现直接决定了用户体验的好坏。DeepMind在Gemini 2.5的技术报告中详细描述了这种现象:在Pokemon游戏实验中,AI智能体偶尔会产生关于游戏状态的错误判断,并将这些错误信息写入上下文。,甚至在完全不需要工具的场景中也会错误地尝试调用工具。从1KB的文本消息到100MB的视频片段,从简单的数值记录到复杂的嵌入向量。而且,基于“Lost in the middle”现象,大模型会给上下文的开头和结尾更高的权重,忽略中间部分内容。

2025-10-13 17:58:40 1120

原创 Filevine四亿刀融资跻身法律AI独角兽,背后的infra怎么搭

在Filevine看来,无论法律类AI还是更多行业的AI产品,其本质都不是取代传统人类,而是通过向量数据库等产品,来解决人类工作中的脏活、累活,以及多数无意义的案头工作。:一个案件通常包括数千份文件,包括法庭文件、诉状和命令、证词记录和专家证人陈述、历史案件档案和先例文件,此外,复杂的医疗记录,每个病人通常有数百页。在传统的法律工作流程中,律师60–80% 的时间,都被花在寻找、过滤、对齐法律条文以及各种信息上,每天消耗的时间至少6小时起步。,日均文件上传量超过 2,000 万页,总处理文档超十亿份。

2025-09-24 18:07:58 737

原创 百图生科:如何搭建针对50亿蛋白质序列、上亿文献的AI检索系统

生物数据形态多样,涵盖蛋白质结构、DNA 序列、细胞成像、科研文本等,生命科学的突破往往就藏在跨模态数据的关联中 ——比如生物体的DNA会影响其所能产生的蛋白质大类,而蛋白质结构与细胞病变之间也往往有着对应关系。基于稳定高效的基础设施,百图生科的目标是把技术转化为真正解决行业问题的可落地方案。具体路径上,通过大模型海量的生成、预测与优化能力,AI几乎可以生成无限药物组合可能,去针对过往未被考虑的疾病治疗靶点,生成具有优化特性的新药物分子或生物制剂,辅助和优化传统制药中的高通量筛选和生成设计环节。

2025-09-23 18:07:55 1107

原创 索引选不对,成本贵十倍!HNSW与IVF如何做选型

如果采用了 PQ/SQ8 压缩,如果采用了 PQ/SQ8 压缩,系统会用查表法(lookup table method) 来加速距离计算:在查询开始时,预先计算查询向量与码本的距离,之后只需“查表+加和”即可快速得到近似距离。读者(查询向量)进门不用瞎转,直接锁定最相关的 2-3 个区域,在小范围里找书,效率自然翻倍。它的核心思路是“先粗分,再细排”:通过 k-means 聚类将海量高维向量划分到不同簇中,查询时只需进入最相关的少量候选簇,既避免了全表暴力扫描,又能兼顾速度与精度。

2025-09-18 18:11:11 1542

原创 企业级向量数据库选型,Milvus 和Zilliz Cloud哪个更合适?

需要特别注意的是,对于多数新用户而言,Milvus 的自主运维需要一定的时间沉淀与技术认知积累,因此这类用户往往更倾向于选择商业化的 Milvus 产品(如云厂商托管版 Milvus、或者Zilliz cloud)。整体来说,通过灵活的机器类型、计算存储分离、降低的运维开销、AUTOINDEX 和弹性扩展,Zilliz Cloud 比自托管的 Milvus 更具成本效益,总拥有成本(TCO)可下降 50%以上。这些特性共同为您的组织带来了更高效、自动化和强大的向量搜索体验。

2025-09-17 18:23:11 1256

原创 报名倒计时丨9月20日Milvus社区北京Unstructured Data Meetup

Unstructured Data Meetup 以非结构化数据和 GenAI为主题,面向开发者的技术分享线下聚会,该活动源自硅谷,由向量数据库领先者 Zilliz 创办。活动受众包括,AI工程师,数据科学家,大数据工程师,AI产品经理等群体。通过 Unstructured Data Meetup,让更多非机构化数据和 GenAI 开发者共聚一堂,共同探索非机构化数据和 Gen AI 的最新进展及演进方向。快扫描下方二维码报名参加,让我们一起开启非结构化数据的新篇章,探索 AI 的无限可能!

2025-09-15 18:11:52 453

原创 Meta如何给RAG做Context Engineering,让模型上下文增加16倍

Meta 团队在 Slimpajama(书籍、arXiv 领域)、PG19、Proof-Pile 等主流数据集,以及 RAG、多轮对话、长文档摘要等任务中对 REFRAG 进行了全面验证,其优势主要体现在效率提升、上下文扩展、场景适配三个维度。同时,因为 LLM 是自回归生成的(依赖前文 token),REFRAG 的方法保证了原始 token 仍能参与生成,不破坏上下文连续性。目标是让解码器基于压缩上下文(编码器输出)的生成结果,尽可能接近基于完整上下文的结果,为下游任务(如 RAG)奠定基础。

2025-09-12 19:08:21 1392

原创 Milvus × 蜜度:如何基于向量数据库构建全网多模态舆情监控系统

对于蜜度来说,舆情管理的核心之一是热点图像数据处理,虽然数据底库的总量不大,只有几十万,但是需要扛住上千的并发访问,为此,蜜度采用了Milvus的内存多副本特性,在load 集合的时候加载了 50 多个副本,从而达到了5000+的qps。作为一家以语言智能与垂直大模型为核心的AI企业,蜜度科技一直服务于政企与媒体客户,提供高效、智能、安全的信息处理解决方案。例如,我们可以同时用向量搜索找出“语义相似”的图片,同时叠加时间范围、区域、事件标签等属性过滤器,从而实现更贴近用户业务的检索逻辑。

2025-09-10 18:10:55 836

原创 实测|Perplexity最新AI浏览器产品Comet,真正的agent全家桶!

Comet不仅找到了标记为"good first issue"的入门级任务,还根据难度和技术领域进行了分类,并提供了每个issue的简要描述和解决思路。同时,直接的协议控制也提供了更精细的页面状态管理能力.比如,面对Milvus这样复杂的开源项目时,让开发者不再需要在数百个GitHub页面间来回跳转,花费数小时阅读文档却仍然一头雾水,让复杂的技术学习变得像与ChatGPT对话一样简单?Milvus是全球领先的开源向量数据库产品,其快速迭代和高活跃度,带来了许多独特的新版本特性和众多复杂的产品概念。

2025-09-09 17:59:59 1633

原创 英伟达新论文:多数LLM应用等不到盈利,SLM比LLM更适合做agent

此外,小模型针对特定任务微调的难度与效果也往往更优,更重要的是大模型的泛化能力,应对的是复杂输入,但是agenticAI存在的必要性,即在于把复杂任务拆解成一系列简单可执行的子任务。部署 “数据采集工具”,记录智能体所有 “非人机交互(non-HCI)的模型调用”—— 包括输入给 LLM 的提示词(prompts)、LLM 输出的响应、智能体调用外部工具(如计算器、数据库)的具体内容,还可以有选择的记录 “响应延迟”(为后续优化速度做准备)。也是因此,坚持“事事都用 LLM”,实质上是在错配算力,

2025-09-04 18:07:01 821

原创 报名开启丨9月20日Milvus社区北京Unstructured Data Meetup

Unstructured Data Meetup 以非结构化数据和 GenAI为主题,面向开发者的技术分享线下聚会,该活动源自硅谷,由向量数据库领先者 Zilliz 创办。活动受众包括,AI工程师,数据科学家,大数据工程师,AI产品经理等群体。通过 Unstructured Data Meetup,让更多非机构化数据和 GenAI 开发者共聚一堂,共同探索非机构化数据和 Gen AI 的最新进展及演进方向。快扫描下方二维码报名参加,让我们一起开启非结构化数据的新篇章,探索 AI 的无限可能!

2025-09-03 18:00:41 583

原创 向量检索快比LLM还贵?不支持S3的向量数据库,迟早要淘汰!

先粗略查一批,再按条件筛 —— 好处是好实现,能利用统一的底层索引结构,缺点是在过滤条件较多时,TopK 结果可能严重不足(我们测到删除 50% 数据后,TopK 20 只能返回 15 个结果)。现如今,S3自身的定位,从简单的对象存储升级成为了一个多模冷存储,不仅仅是向量,图,KV,时序等多种模态,未来常见的业务几乎都可以通过S3Table的模式加速。在我们看来,在 AI 应用里,数据不应该被粗暴割裂成在线和离线,很多情况下,他们是随时动态转化的。因此,过去向量数据库最在意的召回速率,反而不再重要。

2025-09-03 18:00:41 1097

原创 Zilliz Cloud功能上新:智能扩缩容上线, SSO 、Audit Log再升级

关于 Zilliz Cloud 安全与合规实践的更多内容,可访问 Zilliz 信任中心(Zilliz Trust Center)https://zilliz.com/trust-center。功能上,Milvus 2.6 延续并加强了 2.5 版本引入的全文检索功能,进一步强化了搜索功能,并整体升级底层架构以满足更严苛的性能、成本与规模需求。此外,开源的Milvus 2.6 的所有功能,也在此次Zilliz Cloud功能升级中迎来内测(如有需要,可联系对口销售即可开通)。

2025-08-27 18:06:09 815

原创 闪灵AI :如何靠AI视频检索,让小团队广告提案生产效率提升十倍

过去,在创意环节,广告公司想给车企想拍一支科技感汽车穿梭山林的 TVC方案,光找参考素材也得耗掉一整天:视频平台素材效果参差不齐,硬盘里的优秀历史素材,想找到最精准的画面片段,找文件夹、拖拽时间轴也要耗费不小的时间精力。低频冷数据存在S3对象存储,保持低成本。一开始,闪灵AI使用的是开源 Milvus 搭建检索系统,能实现输入文字或图片,毫秒级匹配相似视频片段的效果,但随着素材量增长到近 1000 万向量、二三十万条视频,新的问题出现了:自己搭集群太吃内存,一台服务器根本扛不住,而且运维成本特别高。

2025-08-26 18:24:53 718

原创 直播预告丨从码农到 B 站百万播放 KOL!技术人转型传播秘籍大公开

为了方便大家的交流以及技能的分享,我们组织了北辰使者说这个栏目。两位嘉宾会结合真实经历,从 “如何与 Milvus 结缘、开启社区参与” 讲到 “码农必备的 KOL 意识”,更会揭秘百万播放爆款《鲁迅说没说》(直播最后还设有 Q&A 自由讨论环节,你可以现场提出技术传播、开源参与的困惑,与嘉宾深入交流,找到适合自己的转型方向。同时,还会分享 Milvus 北极星计划的参与体会,给想入局开源与技术传播的朋友实用建议。欢迎大家锁定直播间,和我们一起解锁技术人 “破圈” 新路径,让你的技术价值被更多人看见!

2025-08-19 18:01:11 466

原创 Word2Vec、 BERT、BGE-M3、LLM2Vec,embedding模型选型指南|最全

混合类型” 是近年的创新方向,如 BGE-M3 能生成包含稠密向量、稀疏向量,以及多向量表示 —— 即使文本中未出现 “机器学习”,模型也能通过语义推理在向量中赋予该术语一定权重,既保留了关键词匹配的精确性,又增强了语义理解能力。稀疏向量:通过线性变换与 ReLU 激活,生成包含 “相关术语权重” 的稀疏表示,即使文本中未出现某术语,模型也能通过语义推理赋予其权重(如 “iPhone 新品” 会关联 “苹果公司”“智能手机” 等术语)。Embedding 的本质是从非结构化数据到计算机语言的 语义翻译。

2025-08-15 18:04:41 1052

原创 报名倒计时丨8月23日南京Unstructured Data Meetup火热招募中

Unstructured Data Meetup 是以非结构化数据和 GenAI为主题,面向开发者的技术分享线下聚会,该活动源自硅谷,由向量数据库领先者 Zilliz 创办。我们致力于通过 Unstructured Data Meetup,让更多非机构化数据和 GenAI 开发者共聚一堂,共同探索行业最新进展。快扫描下方二维码报名参加,让我们一起开启非结构化数据的新篇章,探索 AI 的无限可能!8月23日,南京场Unstructured Data Meetup 将在。日13:00-17:30,

2025-08-13 18:12:06 397

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除