直播|Milvus 实战系列 #4 MMUMMR 1.0:快手向量近似计算实践

快手MMU团队采用Milvus向量数据库解决自研系统的复杂性和稳定性问题,实现了千亿级视频检索等应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直播速览

 主题  MMUMMR 1.0:快手向量近似计算实践

 讲师  余晋,快手 MMU 研发工程师

 时间  1 月 27 日 19:00

 福利  参与直播抽奖,领取虎年限定礼盒!

c241d74f7f74a073783c7521ca3c8cf8.png

快手是一款国民级短视频 App。在快手,了解真实的世界,认识有趣的人,也可以记录真实而有趣的自己。快手,拥抱每一种生活。

快手 MMU(多媒体内容理解)团队需要处理许多 ANN 应用场景:相似视频检索、视频合规检索、原创视频检测、商品检测……在接触 Milvus 之前,团队使用的是自研向量检索系统,但实现方式比较复杂,维护成本高,系统可用性也较差,亟需一款高性能、易接入且高稳定性的向量数据库供各个业务方使用。


经过一系列的产品调研,快手MMU团队最终选择了社区活跃、稳定与性能兼备的 Milvus 作为 AI 中台,搭建包括 AI 模型、数据分析工具、ANNS 等平台。目前已经实现的场景包含千亿级的视频检索、十亿级的商品检索,后续也会有更多场景逐步迁徙至 Milvus 搭建的 ANNS 平台。

本期直播我们邀请到了来自快手 MMU 研发工程师余晋,与大家分享 Milvus 在快手中的应用。

af16227f4d6da0b944322ba894aef671.png

Zilliz 以重新定义数据科学为愿景,致力于打造一家全球领先的开源技术创新公司,并通过开源和云原生解决方案为企业解锁非结构化数据的隐藏价值。

Zilliz 构建了 Milvus 向量数据库,以加快下一代数据平台的发展。Milvus 数据库是 LF AI & Data 基金会的毕业项目,能够管理大量非结构化数据集,在新药发现、推荐系统、聊天机器人等方面具有广泛的应用。

4ee9ce378a0f973e330d070194a107c2.gif解锁更多应用场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值