本系列文章介绍
在和社区小伙伴们交流的过程中,我们发现大家最关心的问题从来不是某个具体的功能如何使用,而是面对一个具体的实战场景时,如何选择合适的向量数据库解决方案或最优的功能组合。在 “Milvus 向量数据库进阶” 这个系列文章中,我们会聚焦回答这一类问题,如 “在 AI 应用开发的不同阶段,向量数据库应该如何选型”,“如何正确的构建 RAG 多租系统” 等。虽然这个系列名为进阶,但内容同时适用于初级和进阶用户。我们希望通过这些内容的介绍,帮助大家在向量数据库应用的过程中少走弯路。
上期回顾
Milvus作为成熟的开源向量数据库,提供了Milvus Lite、Standalone和Distributed三种部署形态,满足从原型构建到大规模生产部署的不同需求。上篇文章中,我们详细讨论了各形态特点、适用场景及如何根据项目阶段和数据规模选择合适的Milvus部署方式,同时对比了其他开源向量数据库如Qdrant、Weaviate和Chroma的特点和适用规模。本文中,我们将结合Milvus,讲一讲如何构建 RAG 多租户/多用户系统。
现在市面上的 RAG 系统不管是 toB 的还是 toC 的,基本都需要考虑多租。这篇文章我们结合 Milvus,讲一讲如何构建 RAG 多租户/多用户系统。我们会涉及的关键主题有:
-
用户数据组织与权限控制
-
To B 大型知识库系统的多租户设计
<