将函数调用(Function Calling)与 LLM 相结合能够扩展您的 AI 应用的能力。通过将您的大语言模型(LLM)与用户定义的 Function 或 API 集成,您可以搭建高效的应用,解决实际问题。
本文将介绍如何将 Llama 3.1 与 Milvus 和 API 等外部工具集成,构建具备上下文感知能力的应用。
01
Function Calling 简介
诸如 GPT-4、Mistral Nemo 和 Llama 3.1 之类的大语言模型(LLMs)现在可以检测何时需要调用函数,然后输出包含调用该函数参数的 JSON。这一突破能够有效提升您的 AI 应用的能力。
Functional calling 助力开发人员:
搭建 LLM 驱动数据提取和标记解决方案(例如:从维基百科文章中提取人物名字)
开发能够将自然语言转换为 API 命令或数据库查询语句的应用
打造对话式的知识库搜索引擎
使用的工具
Ollama: 支持在您的笔记本电脑上使用强大的 LLM,有效简化本地操作流程。
Milvus: 用于高效存储和检索数据的首选向量数据库
8B 模型的升级版本,支持多语言、更长的上下文长度(128K)和利用工具进行操作。
02
使用 Llama 3.1 和 Ollama
Llama 3.1 已经在 Function calling 方面进行了微调。它支持通过单一、嵌套和并行的方式调用函数,同时支持多轮调用函数。借助 Llama 3.1 您的 AI 应用可以处理涉及多个并行步骤的复杂任务。
在本文示例中,我们将通过不同的函数来模拟用于获取航班时间的 API,然后在 Milvus 中执行搜索。Llama 3.1 将根据用户的查询决定调用哪个函数。
03
安装依赖
首先,使用 Ollama 下载 Llama 3.1:
ollama run llama3.1
上述指令会将模型下载至您的笔记本电脑,您可以通过 Ollama 使用 Llama 3.1。接着,安装依赖:
! pip install ollama openai "pymilvus[model]"