使用 Ollama、Llama 3.1 和 Milvus 实现Function Calling 功能

020e99268437d093021c33af8d64f725.png

a9dfe35fdf89d6870d74d7ce0ab218cb.png

将函数调用(Function Calling)与 LLM 相结合能够扩展您的 AI 应用的能力。通过将您的大语言模型(LLM)与用户定义的 Function 或 API 集成,您可以搭建高效的应用,解决实际问题。

本文将介绍如何将 Llama 3.1 与 Milvus 和 API 等外部工具集成,构建具备上下文感知能力的应用。

01

Function Calling 简介

诸如 GPT-4、Mistral Nemo 和 Llama 3.1 之类的大语言模型(LLMs)现在可以检测何时需要调用函数,然后输出包含调用该函数参数的 JSON。这一突破能够有效提升您的 AI 应用的能力。

Functional calling 助力开发人员:

  • 搭建 LLM 驱动数据提取和标记解决方案(例如:从维基百科文章中提取人物名字)

  • 开发能够将自然语言转换为 API 命令或数据库查询语句的应用

  • 打造对话式的知识库搜索引擎

使用的工具

  • Ollama: 支持在您的笔记本电脑上使用强大的 LLM,有效简化本地操作流程。

  • Milvus: 用于高效存储和检索数据的首选向量数据库

  • 8B 模型的升级版本,支持多语言、更长的上下文长度(128K)和利用工具进行操作。

0d85422d138741d9f7d768b82480fc9e.png

02

使用 Llama 3.1 和 Ollama

Llama 3.1 已经在 Function calling 方面进行了微调。它支持通过单一、嵌套和并行的方式调用函数,同时支持多轮调用函数。借助 Llama 3.1 您的 AI 应用可以处理涉及多个并行步骤的复杂任务。

在本文示例中,我们将通过不同的函数来模拟用于获取航班时间的 API,然后在 Milvus 中执行搜索。Llama 3.1 将根据用户的查询决定调用哪个函数。

03

安装依赖

首先,使用 Ollama 下载 Llama 3.1:

ollama run llama3.1

上述指令会将模型下载至您的笔记本电脑,您可以通过 Ollama 使用 Llama 3.1。接着,安装依赖:

! pip install ollama openai "pymilvus[model]"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值