递归和非递归分别实现求第n个斐波那契数。

斐波那契数

斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列由 0 和 1 开始,之后的斐波那契数列系数就是由前面的两数相加。

非递归实现求第n个斐波那契数。

#include<stdio.h>

int main()
{
	int *a;
	int i,n;
	printf("请输入n值:");
	scanf_s("%d", &n);
	a = (int*)malloc(n * (sizeof(int)));//申请动态数组内存
	a[0] = 1; 
	a[1] = 1;
	if (n == 1 || n == 2)
	{
		printf("第%d个斐波那契数是1",n);
	}
	for (i = 2; i < n; i++)
	{
		a[i] = a[i - 1] + a[i - 2];
		if (i == n-1)
		{
			printf("第%d个斐波那契数是%d\n", n, a[i]);
		}
	}
	return 0;
}

在这里插入图片描述

递归实现求第n个斐波那契数。

#include<stdio.h>

int Fibonacci(int n);
int main()
{
	int n;
	printf("输入n值:");
	scanf_s("%d", &n);
	printf("%d\n", Fibonacci(n));
	return 0;
}

int Fibonacci(int n)
{
	if (n == 1 || n == 2)
	{
		return 1;
	}
	if (n > 2)
	{
		return Fibonacci(n - 1) + Fibonacci(n - 2);
	}
}

运行后和非递归一致…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值