● 392.判断子序列
class Solution {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
//else dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
else dp[i][j] = dp[i][j - 1]; //如果要删元素,一定是t删元素
}
}
//cout << dp[s.size()][t.size()] << " " << t.size() << endl;
return dp[s.size()][t.size()] == s.size();
}
};
● 115.不同的子序列
class Solution {
public:
int numDistinct(string s, string t) {
//dp[i][j] 以j - 1 结尾的t在以i - 1结尾的s中出现的次数
//if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
//else dp[i][j] = dp[i - 1][j];
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));
for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
else dp[i][j] = dp[i - 1][j];
}
}
return dp[s.size()][t.size()];
}
};