代码随想录算法训练营第54天|392.判断子序列 ● 115.不同的子序列

这两段代码分别使用动态规划解决两个问题:一是判断一个字符串`s`是否是另一个字符串`t`的子序列;二是计算字符串`t`有多少种不同的子序列可以在字符串`s`中找到。关键在于使用二维DP数组存储中间状态,并根据字符匹配情况更新状态。
摘要由CSDN通过智能技术生成

●  392.判断子序列

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
                //else dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
                else dp[i][j] = dp[i][j - 1]; //如果要删元素,一定是t删元素

            }
        }
        //cout << dp[s.size()][t.size()] << " " << t.size() << endl;
        return dp[s.size()][t.size()] == s.size();
    }
};

● 115.不同的子序列

class Solution {
public:
    int numDistinct(string s, string t) {
        //dp[i][j] 以j - 1 结尾的t在以i - 1结尾的s中出现的次数
        //if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        //else dp[i][j] = dp[i - 1][j];
        vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));
        for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                else dp[i][j] = dp[i - 1][j];
            }
        }
        return dp[s.size()][t.size()];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值