《Python零基础到精通》学习笔记:3.7 Python基础之综合练习一

3.7 Python基础之综合练习一

3.7.1 最小公倍数算法

最大公约数(GCD, Greatest Common Divisor),也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。

比如数12和数18的最大公约数是6,因为12的约数有1、2、3、4、6、12,而18的约数有1、2、3、6、9、18,通过比较,显然6是数12和数18的最大公约数。

通过上述过程,显然我们可以通过枚举这两个数的所有约数,考虑这两个数共有的约数,然后选择最大的就是这两个数的最大公约数。因为一个数的约数必然是不大于该数的,所以我们可以通过枚举不超过这两个数中的最大者的正整数,来达到上述效果,具体代码如下述所示:

def gcd_1(x, y):
    ed = max(x, y)+1
    divisor = 1
    for i in range(2, ed):
        if x % i == 0 and y % i == 0:
            divisor = i
    return divisor

其实在古代就有能求解出最大公约数的算法了,《九章算术》是中国古代的数学专著,其中的“更相减损术”就可以用来求两个数的最大公约数,原文是:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”大致所描述的算法步骤是:

  • 任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步;
  • 以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止;
  • 第一步中约掉的若干个2与第二步中最后得到的差(或减数)的乘积就是所求的最大公约数。

实际编程中,我们可以省略第一步,这样第二步最后得到的差(或减数)就是这两个数的最大公约数,其具体实现如下述代码所示:

def gcd_2(x, y):
    while True:
        if x < y:
            x, y = y, x
        elif x == y:
            return x
        x -= y

尽管前面已经介绍了两种求最大公约数的方法,但实际生活中,我们更倾向于使用辗转相除法,来求解任意两个正整数的最大公约数,以求解3012的最大公约数为例,按gcd_2代码,其过程为:

30 - 12 = 18 -> 18 - 12 = 6 -> 12 - 6 = 6

最后因为减数和差相等,即6 - 6 = 0,故6就是3012的最大公约数,仔细观察上述过程,我们可以发现第一步和第二步实际上就是被减数30减了212,然后在第三步,用上次计算的余数6继续与12进行比较。显然,我们可以通过整数求余运算,直接一步求得3012的余数6,此时余数绝对是比除数小的,那么则将除数代替被除数的位置,余数代替除数的位置,然后重复上述过程,直至余数为0,那么此时的除数就是原来两个数的最大公约数了。上述过程用递归方式实现的话,代码是非常简短的,具体代码如下:

def gcd(x, y):
    return x if y == 0 else gcd(y, x%y)

如何求任意两个正整数的最小公倍数

几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数(LCM,Least Common Multiple)。

37的最小公倍数是21,因为不存在一个比21还小的正整数,既是3的倍数,也是7的倍数。

显然对任意两个正整数aba*b必是他们的公倍数。假设gab的最大公约数,那么ab可以分别写成一个正整数与他们最大公约数的乘积的形式,即a = p * gb = q * g。那么显然c = p * q * g,是ab的一个公倍数,而且是最小公倍数。因为pq必定不共有大于1的公约数,所以若减小p、q、g这三个任意一个数的话,都不能使其乘积还是ab的倍数。

3.7.2 输出指定范围内的素数

如何判断一个正整数是否是素数

素数(Prime Number),又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则,称为合数(Composite Number)。1既不是素数,也不是合数。

2、3、5、7、11都是素数,因为找不到除了1和其本身之外的约数;而4、6、8都是合数,因为4可以整除26可以整除238可以整除24

根据上述定义,我们很容易写出判断一个素数是否是素数的代码:

    def is_prime_1(x):
        if x == 1:
            return False
        for i in range(2, x):
            if x % i == 0:
                return False
        return True

假设一个正整数a,则其可以被写成任意两个正整数之积,即a = p * q,假设p < q,那么正整数pq都是a的约数,注意到,如果我们知道pa的约数,那么可以通过q = a / p快速求得另外一个约数q。所以,我们在判断质数的时候,只需要枚举2到不大于sqrt(a)的正整数即可。

虽然通过上述方法,已经能让我们在根号级别的复杂度内,判断一个正整数是否是素数,但如果我们要判断很多个数是否为素数呢?是否每次都需要枚举int(sqrt(a)+1)个数呢?回到我们最初的起点,我们之所以要枚举这些数,就是想找出原数的约数。然后除1外,任何一个正整数都能写成多个素数的乘积的形式,那么我们枚举特定范围内的所有素数,也能达到相同的效果,而且在判断多个正整数是否是素数的时候,我们只需要枚举更少的质因数与其比较。大家可以看下面不同区间内的素数统计结果:

从上图的统计结果我们可以发现,当区间越来越大,里面的素数个数和区间内所有数字的个数差距也越来越大。所以,我们用区间内的素数,去判断一个整数是不是素数,比较的次数将更少。

而求不超过某个正整数x内的所有素数,有一个著名的算法——埃拉托斯特尼筛法。其算法描述为:

  • 先用一个数组vis,把不大于该正整数x的所有正整数标记为0,表示没有访问;
  • 然后从第一个素数2开始遍历整个区间,如果当前访问的数没有访问过,则可以认为它是一个素数,那么就将它在该区间内所有的倍数全部标记为已访问,这样就保证外部的循环发现的没有访问过的数都是素数。

其具体实现如下述代码所示:

    def sieve(x):
        vis = [0 for i in range(x+1)]
        prime_table = []
        for i in range(2, x+1):
            if vis[i] == 0:
                prime_table.append(i)
                for j in range(i*2, x+1, i):
                    vis[j] = 1
        return prime_table

然而,除了上述筛法,还有其他高效的筛法,比如欧拉筛法。

    def ouler(x):
        vis = [0 for i in range(x+1)]
        prime_table = []
        ln = 0
        for num in range(2, x+1):
            if vis[num] == 0:
                prime_table.append(num)
                ln += 1
            for j in range(ln):
                if num * prime_table[j] > x:
                    break
                vis[num * prime_table[j]] = 1
                if num % prime_table[j] == 0:
                    break
        return prime_table

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值