子序列 (线性DP)

25 篇文章 1 订阅
15 篇文章 0 订阅

子序列

题目描述
小美有一个由n个元素组成的序列{a1,a2,a3,…,an},她想知道其中有多少个子序列{ap1,ap2,…,apm}(1 ≤ m ≤ n, 1 ≤ p1 < p2 ,…, < pm ≤ n),满足对于所有的 i , j (1 ≤ i < j ≤ m) , apipj < apjpi 成立。
输入描述:
第一行一个整数n (1≤n≤100)表示序列长度。
接下来一行n个整数{a1,a2,a3,…,an}(1≤ ai ≤100)表示序列。
输出描述:
输出一行表示满足条件的子序列的数目。因为答案可能很大,请输出答案mod 1,000,000,007。

思路:其状态转移与 LIS 的 O(n2) 状态转移类似,因为题目中定义的两个元素之间的大小关系,可以推出多个元素之间的关系:如果满足 axy< ayx , ayz< azy 那么 axz< azx也成立。那么我们就可以线性DP来做了:
dp[ i ] :选取第 i 个数得到的满足条件的子序列数目
所以最终答案就是所有dp[i] 的和
复杂度:O(n2)
注意:由于aij 会爆精度,所以两边同时取对数比较即可。

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 110;
const int mod = 1000000007;
int dp[N],a[N];

int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) cin >> a[i];
	for(int i=1;i<=n;i++){
		dp[i] = 1;
		for(int j=1;j<i;j++){
			if(i*log(a[j]) < j*log(a[i]) )
				dp[i] = (dp[i]+dp[j]) % mod;
		}
	}
	int ans = 0;
	for(int i=1;i<=n;i++) ans = (ans + dp[i]) %mod;
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值