子序列
题目描述
小美有一个由n个元素组成的序列{a1,a2,a3,…,an},她想知道其中有多少个子序列{ap1,ap2,…,apm}(1 ≤ m ≤ n, 1 ≤ p1 < p2 ,…, < pm ≤ n),满足对于所有的 i , j (1 ≤ i < j ≤ m) , apipj < apjpi 成立。
输入描述:
第一行一个整数n (1≤n≤100)表示序列长度。
接下来一行n个整数{a1,a2,a3,…,an}(1≤ ai ≤100)表示序列。
输出描述:
输出一行表示满足条件的子序列的数目。因为答案可能很大,请输出答案mod 1,000,000,007。
思路:其状态转移与 LIS 的 O(n2) 状态转移类似,因为题目中定义的两个元素之间的大小关系,可以推出多个元素之间的关系:如果满足 axy< ayx , ayz< azy 那么 axz< azx也成立。那么我们就可以线性DP来做了:
dp[ i ] :选取第 i 个数得到的满足条件的子序列数目
所以最终答案就是所有dp[i] 的和
复杂度:O(n2)
注意:由于aij 会爆精度,所以两边同时取对数比较即可。
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 110;
const int mod = 1000000007;
int dp[N],a[N];
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++) cin >> a[i];
for(int i=1;i<=n;i++){
dp[i] = 1;
for(int j=1;j<i;j++){
if(i*log(a[j]) < j*log(a[i]) )
dp[i] = (dp[i]+dp[j]) % mod;
}
}
int ans = 0;
for(int i=1;i<=n;i++) ans = (ans + dp[i]) %mod;
cout<<ans<<endl;
return 0;
}