1.题目描述
一个机器人位于一个
m x n
网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用
1
和0
来表示。
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
输入:obstacleGrid = [[0,1],[0,0]]
输出:1
提示:
- m == obstacleGrid.length
- n == obstacleGrid[i].length
- 1 <= m, n <= 100
- obstacleGrid[i][j] 为 0 或 1
2.思路分析
2.1 动态规划
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
1.确定dp数组以及下标含义
- dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2.确定递推公式
-
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
-
注: 有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
if obstacleGrid[i][j] != 1: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] else: dp[i][j] = 0
3.dp数组初始化
- 初始化第一个位置 dp[0][0] = 1 if obstacleGrid[0][0] != 1 else 0
- 初始化第一行 dp[i][0] =1 (遇到障碍物后面的dp值均为0)
- 初始化第一列 dp[0][j] =1 (遇到障碍物下面的dp值均为0)
4.确定遍历顺序
左->右 上->下 这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
5.举例推导dp数组
以obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]为例
3.代码实现
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
row = len(obstacleGrid)
col = len(obstacleGrid[0])
dp = [[0 for _ in range(col)] for _ in range(row)]
# 初始化第一个位置
dp[0][0] = 1 if obstacleGrid[0][0] != 1 else 0
if dp[0][0] == 0:
return 0
# 初始化第一行
for i in range(1, col):
if obstacleGrid[0][i] != 1:
dp[0][i] = dp[0][i - 1]
# 初始化第一列
for j in range(1, row):
if obstacleGrid[j][0] != 1:
dp[j][0] = dp[j - 1][0]
for i in range(1, row):
for j in range(1, col):
if obstacleGrid[i][j] != 1:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
else:
dp[i][j] = 0
return dp[row - 1][col - 1]
复杂度分析
- 时间复杂度:O(nm),其中 n 为网格的行数,m 为网格的列数。我们只需要遍历所有网格一次即可。
- 空间复杂度:O(mn)。利用滚动数组优化,我们可以只用 O(m) 大小的空间来记录当前行的 f 值
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
#使用一维dp数组
m, n = len(obstacleGrid), len(obstacleGrid[0])
# 初始化dp数组
# 该数组缓存当前行
curr = [0] * n
for j in range(n):
if obstacleGrid[0][j] == 1:
break
curr[j] = 1
for i in range(1, m): # 从第二行开始
for j in range(n): # 从第一列开始,因为第一列可能有障碍物
# 有障碍物处无法通行,状态就设成0
if obstacleGrid[i][j] == 1:
curr[j] = 0
elif j > 0:
# 等价于
# dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
curr[j] = curr[j] + curr[j - 1]
# 隐含的状态更新
# dp[i][0] = dp[i - 1][0]
return curr[n - 1
复杂度分析
- 时间复杂度:O(nm),其中 n 为网格的行数,m 为网格的列数。我们只需要遍历所有网格一次即可。
- 空间复杂度:O(m)。