1.题目描述
给你一个数组
prices
,其中prices[i]
是商店里第i
件商品的价格。商店里正在进行促销活动,如果你要买第
i
件商品,那么你可以得到与prices[j]
相等的折扣,其中j
是满足j > i
且prices[j] <= prices[i]
的 最小下标 ,如果没有满足条件的j
,你将没有任何折扣。请你返回一个数组,数组中第
i
个元素是折扣后你购买商品i
最终需要支付的价格。
输入:prices = [8,4,6,2,3]
输出:[4,2,4,2,3]
解释:
商品 0 的价格为 price[0]=8 ,你将得到 prices[1]=4 的折扣,所以最终价格为 8 - 4 = 4 。
商品 1 的价格为 price[1]=4 ,你将得到 prices[3]=2 的折扣,所以最终价格为 4 - 2 = 2 。
商品 2 的价格为 price[2]=6 ,你将得到 prices[3]=2 的折扣,所以最终价格为 6 - 2 = 4 。
商品 3 和 4 都没有折扣。
输入:prices = [1,2,3,4,5]
输出:[1,2,3,4,5]
解释:在这个例子中,所有商品都没有折扣。
输入:prices = [10,1,1,6]
输出:[9,0,1,6]
提示:
1 <= prices.length <= 500
1 <= prices[i] <= 10^3
2.思路分析
2.1 直接遍历
对于第 i 件商品的价格为prices[i],我们需要查找到相应可能的折扣。按照题目要求,从第i +1 件商品开始依次向后遍历,直到找到第一个满足 prices[j]≤prices[i] 的下标 j 即可求出该物品的最终折扣价格。
2.2 单调栈
根据题意求解的是:prices 中每个元素对应位置的右边的第一个更小的元素值,具体做法是:
反向遍历prices数组,同时维护一个单调栈(当前元素右侧更小的元素列表),栈顶->栈底(递减)
当遍历第i个元素时,
- 如果当前元素prices[i] < 栈顶元素, 栈顶元素出栈,直至当前元素prices[i] ≥ 栈顶元素,此时栈顶元素为右边第一个小于等于prices[i]的元素
- 如果当前元素prices[i] ≥ 栈顶元素,此时可知当前栈顶元素即为prices[i]右边第一个小于等于prices[i]的元素
- 如果当前栈为空, 此时折扣为0, 商品的价格为原价prices[i]
- 将 prices[i] 压入栈中,保证 prices[i] 为当前栈中的最大值;
举个栗子:prices = [8,4,6,2,3],来说明整个过程
3.代码实现
3.1 直接遍历
class Solution:
def finalPrices(self, prices: List[int]) -> List[int]:
ans = [0] * len(prices)
for i in range(len(prices)):
discount = 0
for j in range(i + 1, len(prices)):
if prices[j] <= prices[i]:
discount = prices[j]
break
ans[i] = prices[i] - discount
return ans
复杂度分析
时间复杂度: O(n^2),其中 n 为数组的长度。
空间复杂度:O(1), 返回值不计入空间复杂度。
3.2 单调栈
class Solution:
def finalPrices(self, prices: List[int]) -> List[int]:
# 单调栈(栈顶->栈底:递减(大->小))
length = len(prices)
ans = [0] * length
stack = []
for i in range(length-1, -1, -1):
# 当栈存在且当前元素 < 栈顶元素时, 栈顶元素出栈, 直至当前元素 ≥ 栈顶元素
while stack and prices[i] < prices[stack[-1]]:
stack.pop()
if stack:
ans[i] = prices[i] - prices[stack[-1]]
else:
ans[i] = prices[i]
stack.append(i)
return ans
复杂度分析
时间复杂度: O(n),其中 n 为数组的长度。
空间复杂度:O(1), 需要栈空间存储中间变量,需要的空间为 O(n)。 。