题目
- 题目网址:https://vjudge.net/problem/UVA-548
- 大意:
已知二叉树的中序和后序遍历结果,求到根的路径上结点值之和最小的叶子结点的值。
知识点
- 中序+后序还原二叉树(使用数组)
- 递归
- find()函数
思路
后根节点遍历最后一个就是当前的根节点,只需要在中序遍历中找到它,就可以知道左右子树(tree[i][0]-左节点,tree[i][1]-右节点),通过递归的方式就可以还原。我没有再执行一次递归遍历,通过传参的方式在还原二叉树过程中记录路径长度(tree[i][3]-路径长度),最后只需要记录叶子节点,遍历一遍叶子节点tree[i][3],找到最小的叶子节点即可。
代码
# include <iostream>
# include <cstdio>
# include <vector>
# define MAXN 10000
using namespace std;
int len, inorder[MAXN], postorder[MAXN], tree[MAXN][3];
// [0]-左节点,[1]-右节点,[3]-路劲长度
vector<int> leaves;
int build(int i_start, int i_end, int p_start, int p_end, int sum) {
if(i_start < 0 || i_end < 0 || p_start < 0 || p_end < 0) return -1;
// 后根序最后一个节点就是当前的树根
int root = postorder[p_end];
// 在中根序遍历序列中,找到当前根节点索引
int index = find(inorder, inorder + len, root) - inorder;
tree[root][2] = sum + root;
if (i_start >= i_end){ // 如果左右节点都为0 -> 该根节点为叶子节点
leaves.push_back(root);
return 0;
}else { // 不是叶子节点
tree[root][0] = build(i_start, index - 1,
p_start, p_start + (index - i_start - 1), sum + root); // 左节点
tree[root][1] = build(index + 1, p_end,
p_start + (index - i_start), p_end - 1, sum + root); // 右节点
return root;
}
}
void find_min() {
int min = MAXN, min_l = -1;
for (int i :leaves) {
if (tree[i][2] < min) {
min = tree[i][2]; min_l = i;
}
}
printf("%d", min_l); // 输出到根路径权和最小的叶子节点
}
int main() {
// 输入
cin >> len;
for (int i = 0; i < len; i++)
scanf("%d", &(inorder[i]));
for (int i = 0; i < len; i++)
scanf("%d", &(postorder[i]));
// 构建树
build(0, len - 1, 0, len - 1, 0);
find_min();
return 0;
}
过程中遇到的问题 & 解决
- find() 函数不但可以对vector、string等查找,作为模板函数对一般的数组也可以进行查找,与sort()函数类似,参数为find(array, array+数组长度, 查找目标)
- 注意只有一个左孩子/右孩子的情况 (注意递归返回的条件,和是否是叶子节点的条件)
- 全局变量不能使用scanf()吗??(有点小奇怪,cin就可以 0.0…)
测试
输入:(格式没有按照题目的来)
# 长度 + 中根序遍历 + 后根序遍历
7
3 2 1 4 5 7 6
3 1 2 5 6 7 4
8
7 8 11 3 5 16 12 18
8 3 11 7 16 18 12 5
结果:
1
3
本文解析了如何利用中序遍历和后序遍历重建二叉树,通过递归实现路径和最小叶子节点的查找。涉及的知识点包括后根节点定位、递归遍历与重建、find()函数应用。实例演示了如何在UVA-548问题中找到根节点到叶子节点路径上和最小的值。
618

被折叠的 条评论
为什么被折叠?



