leetcode每日更新 5/25

Table of Contents

240. Search a 2D Matrix II

279. Perfect Squares

283. Move Zeroes

287. Find the Duplicate Number

297. Serialize and Deserialize Binary Tree

300. Longest Increasing Subsequence


240. Search a 2D Matrix II

https://leetcode.com/problems/search-a-2d-matrix-ii/

Binary Search, Divide and Conquer

TIme: start with Top Right corner: O(m + n)

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if(matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return false;
        }
        int col = matrix[0].length - 1;
        int row = 0;
        while(row < matrix.length && col >= 0) {
            if(matrix[row][col] == target) {
                return true;
            } else if(matrix[row][col] > target) {
                col--;
            } else {
                row++;
            }
        }
        return false;
    }
}

 

279. Perfect Squares

https://leetcode.com/problems/perfect-squares/

DP

dp[n] indicates that the perfect squares count of the given n, and we have:

dp[0] = 0 
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 } 
      = Min{ dp[3]+1, dp[0]+1 } 
      = 1				
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 } 
      = Min{ dp[4]+1, dp[1]+1 } 
      = 2
						.
						.
						.
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 } 
       = Min{ dp[12]+1, dp[9]+1, dp[4]+1 } 
       = 2
						.
						.
						.
dp[n] = Min{ dp[n - i*i] + 1 },  n - i*i >=0 && i >= 1
class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        dp[0] = 0;
        for(int i = 1; i <= n; i++) {
            int min = Integer.MAX_VALUE;
            int j = 1;
            while(j*j <= i) {
                min = Math.min(min, dp[i - j*j] + 1);
                j++;
            }      
            dp[i] = min;
        }
        return dp[n];
    }
}

 

283. Move Zeroes

https://leetcode.com/problems/move-zeroes/

Array, Two Pointers

class Solution {
    public void moveZeroes(int[] nums) {
        if(nums == null || nums.length == 0) {
            return;
        }
        int slow = 0;
        for(int i = 0; i < nums.length; i++) {
            if(nums[i] != 0) {
                nums[slow++] = nums[i];
            }
        }
        while(slow < nums.length) {
            nums[slow++] = 0;
        }
    }
}

 

287. Find the Duplicate Number

https://leetcode.com/problems/find-the-duplicate-number/

HashSet - O(n) Time, O(n) Space

O(1) Space Solution: Similiar to LinkedList Cycle detection

class Solution {
    public int findDuplicate(int[] nums) {
        int slow = nums[0];
		int fast = nums[nums[0]];
		while (fast != slow){
			slow = nums[slow];
			fast = nums[nums[fast]];
		}
		fast = 0;
		while (fast != slow){
            slow = nums[slow];
			fast = nums[fast];
		}
		return slow;
    }
}
/*
1,3,4,2,2
slow: 1
fast: 3

slow: 3
fast: 4

slow: 2
fast: 4

slow: 4
fast: 4
break
slow: 4
fast: 0

slow: 2
fast: 1

slow: 4
fast: 3

slow: 2
fast: 2

return 2
*/

 

297. Serialize and Deserialize Binary Tree

https://leetcode.com/problems/serialize-and-deserialize-binary-tree/

Design, Binary Tree

Serialize: In-order traversal with StringBuilder

De-serialize: Queue

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Codec {
    private static String NULL = "null";
    private static String splitter = ",";

    // Encodes a tree to a single string.
    public String serialize(TreeNode root) {
        StringBuilder sb = new StringBuilder();
        return buildString(root, sb).toString();
    }
    
    private StringBuilder buildString(TreeNode root, StringBuilder sb) {
        if (root == null) {
            return sb.append(NULL);
        } 
        sb.append(root.val).append(splitter);
        buildString(root.left, sb).append(splitter);
        buildString(root.right, sb);
        return sb;
    }

    // Decodes your encoded data to tree.
    public TreeNode deserialize(String data) {
        Queue<String> q = new LinkedList<>();
        q.addAll(Arrays.asList(data.split(splitter)));
        return buildTree(q);
    }
    
    private TreeNode buildTree(Queue<String> q) {
        String node = q.remove();
        if(node.equals(NULL)) {
            return null;
        } 
        TreeNode n = new TreeNode(Integer.valueOf(node));
        n.left = buildTree(q);
        n.right = buildTree(q);
        return n;
    }
}

// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));

 

300. Longest Increasing Subsequence

https://leetcode.com/problems/longest-increasing-subsequence/

DP

Time: O(nlogn)

dp[i] represents the increasing subsequence formed by including the currently encountered element nums[i]. 

Use Arrays.binarySearch(int[] a, int fromIndex, int toIndex, int key) to search the insertion point:

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#binarySearch(int[],%20int,%20int,%20int)

The insertion point is defined as the point at which the key would be inserted into the array: the index of the first element in the range greater than the key, or toIndex if all elements in the range are less than the specified key.

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums == null || nums.length == 0) {
            return 0;
        }
        int[] dp = new int[nums.length];
        int len = 0;
        for(int num : nums) {
            int index = Arrays.binarySearch(dp, 0, len, num);
            if(index < 0) {
                index = -index - 1;
            }
            dp[index] = num;
            if(index == len) {
                len++;
            }
        }
        return len;
    }
}

/*
[0,8,4,12,2]
dp:
[0]
[0,8]
[0,4]
[0,4,12]
[0,2,12] -> len = 3
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值