Seam Carving算法

Seam Carving算法是一种图像缩放算法,它能够将图像缩放也不影响图片的主要内容。它主要分为:
一、计算图像的能量图
二、通过能量图计算代价图以及路径图
三、通过代价图以及路径图寻找能量最低的seam
四、重复上述步骤

一、能量图的计算
为了定义图像中像素的重要程度,我们计算图像中像素的“能量”。“能量”是用来衡量像素的重要程度。我们知道如果一个像素具有较大的梯度,说明这个像素很大可能为边缘。而边缘往往是一副图像的重要内容。我们定义以下能量函数去计算每个像素的能量:
E ( I ) = ∣ ∂ ∂ x I ∣ + ∣ ∂ ∂ y I ∣ E(I)=|\frac{∂}{∂x}I|+|\frac{∂}{∂y}I| E(I)=xI+yI
这里我们遍历图像中每个像素,计算其能量,输出一个与图像相同尺寸的能量图。这里我们利用np.gradient直接计算梯度,进而计算能量。计算能量图的函数如下:

from skimage import color
from skimage import color,io,measure
import numpy as np

def energy_function(image):
    image_gray = image.copy()
    image_gray = color.rgb2gray(image_gray)
    H,W = image.shape
    G = np.gradient(image)
    out = np.abs(G[0])+np.abs(G[1])
    return out

查看效果:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
from skimage import color
from IPython.display import HTML
from time import time

plt.rcParams['figure.figsize']=(15,12)
plt.rcParams['image.interpolation']='nearest'
plt.rcParams['image.cmap']='gray'

fig = plt.gcf()
fig.set_size_inches(18.5,13.5)

energy_map = energy_function(image)
plt.title('Energy_map')
plt.subplot(211)
plt.imshow(image)
plt.subplot(212)
plt.imshow(energy_map)
plt.show()

输出:
在这里插入图片描述
我们发现energy_map中边缘像素具有较大亮度,且能量图像也能显现图像的内容。

二、计算代价和路径图
为了说明计算代价的意义,我们先解释何为seam。seam定义为像素从上到下(或从左到右)的连接路径。对于从上到下的像素,我们将从每一行中选取一个像素。这些连接的路径就组成了一条seam。seam的数学定义为:
s x = { s i x } i = 1 n = { x ( i ) , i } i = 1 n , s . t . , ∀ ∣ x ( i ) − x ( i − 1 ) ∣ ≤ 1 s^x=\{s_i^x\}_{i=1}^n=\{x(i),i\}_{i=1}^n,s.t.,\forall |x(i)-x(i-1)|≤1 sx={six}i=1n={x(i),i}i=1n,s.t.x(i)x(i1)1 s y = { s i y } j = 1 m = { j , y ( j ) } j = 1 n , s . t . , ∀ ∣ y ( j ) − y ( j − 1 ) ∣ ≤ 1 s^y=\{s_i^y\}_{j=1}^m=\{j,y(j)\}_{j=1}^n,s.t.,\forall |y(j)-y(j-1)|≤1 sy={siy}j=1m={j,y(j)}j=1n,s.t.y(j)y(j1)1
第一个式子为从从上到下seam,第二个式子为从左到右的seam。那么seam对于图像缩放有何意义呢?例如,对于200×200的图像,我们删除一条从上到下的seam,那么图像就变为200×199的尺寸。所以如果删除一些seam,就可以达到缩放的目的。但是我们删除什么样的seam呢?我们知道,能量定义了一个像素在图像中的重要程度。为了保留图像中的主要内容,我们删除图像中图像中总能量较低的seam,这样就保留了图像中的主要内容。
那么如何计算代价呢?我们知道对于从上到下的seam。如果一个像素的横坐标为x,那么上一行组成seam的像素的横坐标只能是x-1,x,x+1。那么我们为了让能量最小,我们能选择上一行这三个像素中能量最小的像素和该像素组成seam,那么通过该点时的总能量为这一点的能量加上上一行像素总能量的最小值。所以可以利用以下递推公式(从上到下)计算代价:
M ( i , j ) = E ( i , j ) + m i n ( M ( i − 1 , j − 1 ) , M ( i − 1 , j ) , M ( i − 1 , j + 1 ) ) M(i,j)=E(i,j)+min(M(i-1,j-1),M(i-1,j),M(i-1,j+1)) M(i,j)=E(i,j)+min(M(i1,j1),M(i1,j),M(i1,j+1))
例如:
能量图为:
在这里插入图片描述
代价的计算方式为:
在这里插入图片描述
由于计算的最后一行时,为经过最后一行像素的seam的最小总能量。那么我们只要挑选总能量最小的像素,并进行回溯,找到这个最小能量对应的seam即可。计算代价的函数如下:

def compute_cost(image,energy_map,axis=1):
    if axis==0:
        energy_map = np.transpose(energy_map)
    H,W = energy_map.shape
    Energy_cost = np.zeros((H,W))
    path = np.zeros((H,W))
    Energy_cost[0,:] = energy_map[0,:].copy()
    for i in range(1,H):
        for j in range(1,W):
            Cost_list = np.array([Energy_cost[i-1,j-1],Energy_cost[i-1,j],\
                                  Energy_cost[i-1,min(j+1,W-1)]])
            
            index = np.argmin(Cost_list)
            Energy_cost[i,j] = energy_map[i,j] + Cost_list[index]
            path[i,j] = index-1
        Cost_list_left = np.array([Energy_cost[i-1,0],Energy_cost[i-1,1]])
        index = np.argmin(Cost_list_left)
        Energy_cost[i,0] = Cost_list_left[index] + energy_map[i,0]
        path[i,0] = index
    if axis == 0:
        path = np.transpose(path)
        Energy_cost = np.transpose(Energy_cost)
    return path,Energy_cost

注意这里的path用于记录路径,便于回溯时找到seam。对于path[i,j],如果(i,j)位置的能量来自上一行左边则为-1,中间为0,右边为1。还需注意的是,如果我们要寻找从左到右的seam,只需将图像翻转90°,寻找从上到下的seam。下面检测效果:

vpath,vcost = compute_cost(image,energy_map,axis=1)
plt.title('Vertical cost map')
plt.imshow(vcost,cmap='inferno')
plt.axis('off')
plt.show()

hpath,hcost =compute_cost(image,energy_map,axis=0)
plt.title('Horizonal cost map')
plt.imshow(hcost,cmap='inferno')
plt.axis('off')
plt.show()

输出为:
在这里插入图片描述
在这里插入图片描述
下面我们回溯找到相应的能量最小seam,我们只需找到最后一行总能量最小的像素,向上找到组成seam的相应的像素,如果path[i,j]=-1,则找到左上角的像素;如果为path[i,j]=-1则回溯至上方像素;path[i,j]=1,回溯至右上方像素。回溯至上一行计算以上操作,直至到达图像第一行。回溯函数为:

def backtrack_seam(path,end_index):
    H,W = path.shape
    seam = -np.ones(H)
    seam[-1] = end_index.copy()
    for i in range(H-1):
        if path[H-1-i,end_index] ==-1:
            end_index = end_index-1
            seam[H-2-i]=end_index
        elif path[H-1-i,end_index] == 0:
            end_index = end_index
            seam[H-2-i] = end_index
        else:
            end_index = end_index+1
            seam[H-2-i] = end_index
    return seam

下面我们利用compute_costbacktrack_seam计算代价并回溯找到能量最小的seam:

vpath,vcost = compute_cost(image,energy_map)
end = np.argmin(vcost[-1])
seam_energy = vcost[-1,end]
seam = backtrack_seam(vpath,end)

# Visualize seam
vseam = np.copy(image)
for row in range(vseam.shape[0]):
    vseam[row, int(seam[row]), :] = np.array([1.0, 0, 0])

plt.title('Vertical Seam')
plt.axis('off')
plt.imshow(vseam)
plt.show()

输出为:
在这里插入图片描述
明显可以看出上图标出的seam似乎并没有经过云彩城堡或是小路。
我们得到了能量最小的seam,下面我们需要把seam给移出图片:

def remove_seam(image,seam):
    seam = seam.astype(int)
    if len(image.shape)==2:
        image = np.expand_dims(image,axis=2)
    H,W,C = image.shape
    image_new = np.zeros((H,W-1,C))
    for i in range(H):
        image_new[i,:seam[i]]=image[i,:seam[i]]
        image_new[i,seam[i]:] = image[i,seam[i]+1:]
    image_new = np.squeeze(image_new)
    return image_new

四、迭代的寻找seam,并移除
有了上面这些步骤,我们就可以指定图片的尺寸,对图片进行缩小,这里的主要思路是移除一条seam后在移除的图像上找到另一条seam,然后在移除;重复上述操作,直至图像到达指定的维度:

def reduce(image,size,axis=1,efunc=energy_function,cfunc=compute_cost,bfunc=\
           backtrack_seam,rfunc=remove_seam):
    if axis == 0:
        image = np.transpose(image,(1,0,2))
    image_new = image.copy()
    W = image.shape[1]
    image_gray = color.rgb2gray(image_new)
    energy_map = efunc(image_gray)
    paths,cost = cfunc(image_gray,energy_map,1)
    index = np.argmin(cost[-1])
    seam = bfunc(paths,index)
    for i in range(W-size):
        image_new = rfunc(image_new,seam)
        image_gray = color.rgb2gray(image_new)
        energy_map = efunc(image_gray)
        paths,cost =cfunc(image_gray,energy_map,1)
        index = np.argmin(cost[-1])
        seam = bfunc(paths,index)
    if axis ==0:
        image_new = np.transpose(image_new,(1,0,2))
    return image_new

这里的axis指定我们希望缩小的是图像的维度,即宽度或是长度,axis=0默认缩小宽度;size是我们想要将某一维度缩小至的数值。这里的efunccfuncbfuncrfunc分别指定计算能量,代价,回溯以及移除seam的方法,这里默认为我们上面所编写的enenrgy_functioncompute_costbacktrack_seam以及remove_seam。下面查看效果:

from carving_seam import reduce
# Reduce image width
W_new = 400
out = reduce(image, W_new)
plt.subplot(2, 1, 1)
plt.title('Original')
plt.imshow(image)
plt.subplot(2, 1, 2)
plt.title('Resized')
plt.imshow(out)
plt.show()


# Reduce image height
H_new = 300

out = reduce(image, H_new, axis=0)
plt.subplot(1, 2, 1)
plt.title('Original')
plt.imshow(image)

plt.subplot(1, 2, 2)
plt.title('Resized')
plt.imshow(out)

plt.show()

输出为:
在这里插入图片描述
在这里插入图片描述
我们可以看到实际上缩小宽度时,效果并不理想。这主要是因为我们指定的宽度实际上小,即需要找出的seam过多。

附:
一、用Seam Carving对图像进行放大处理
我们既然可以用Seam Carving找出几条能量最小的seam然后缩小图像,那么同样我们可以找出几条能量最小的seam,对图像进行放大,比如可以找出能量最小的seam,然后在相应位置重复复制这条seam:

def duplicate_seam(image,seam):
    if len(image.shape)==2:
        image=np.expand_dims(image,axis=2)
    H,W,C = image.shape
    image_new = np.zeros((H,W+1,C))
    for i in range(H):
        image_new[i]=np.insert(image[i],int(seam[i]),image[i,int(seam[i])],axis=0)
    image_new = np.squeeze(image_new)
    return image_new

def enlarge_naive(image,size,axis=1,efunc=energy_function,cfunc=compute_cost,\
                  bfunc = backtrack_seam,dfunc=duplicate_seam):
    if axis==0:
        image = np.transpose(image,(1,0,2))
    W = image.shape[1]
    image_gray = color.rgb2gray(image)
    energy_map = efunc(image_gray)
    paths,cost = cfunc(image,energy_map,1)
    end_index = np.argmin(cost[-1])
    seam = bfunc(paths,end_index)
    image_new = image.copy()
    for i in range(size-W):
        image_new = dfunc(image_new,seam)
    return image_new

这里的duplicate_seam是对seam进行复制的函数,然而这样的方法虽然速度较快,但是效果并不好:

from carving_seam import enlarge_naive
W_new = 800

enlarged = enlarge_naive(image, W_new)
W = image.shape[1]
plt.subplot(211)
plt.imshow(enlarged)
plt.subplot(212)
plt.imshow(image)
plt.show()

得到:
在这里插入图片描述
更为成熟的想法是:找出N条能量最小的seam,进行复制:

def find_seam(image,k,efunc=energy_function,cfunc=compute_cost,bfunc=\
              backtrack_seam,rfunc=remove_seam):
    image_gray = color.rgb2gray(image)
    energy_map=efunc(image_gray)
    paths,cost=cfunc(image,energy_map,axis=1)
    end_index = np.argmin(cost[-1])
    seam = bfunc(paths,end_index)
    seam_list=[seam]
    for i in range(int(k-1)):
        energy_map = rfunc(energy_map,seam)
        image_gray = rfunc(image_gray,seam)
        paths,cost = cfunc(image_gray,energy_map)
        end_index = np.argmin(cost[-1])
        seam = bfunc(paths,end_index)
        seam_list.append(seam)
    return np.array(seam_list)

def enlarge(image,size,axis=1,efunc=energy_function,cfunc=compute_cost,bfunc=\
          backtrack_seam,rfunc=remove_seam,dfunc=duplicate_seam):
    if axis ==0:
        image = np.transpose(image,(1,0,2))
    W = image.shape[1]
    seams = find_seam(image,size-W,efunc,cfunc,bfunc,rfunc)
    image_large = image.copy()
    for i in range(size-W):
        image_large = dfunc(image_large,seams[i])
    if axis==0:
        image_large = np.transpose(image_large,(1,0,2))
    return image_large

这里的find_seam为寻找能量最小的几条seam的函数,输出的每一行为相应的seam,我们可以看看他的效果:

from carving_seam import find_seam

# Alternatively, find k seams for removal and duplicate them.
W_new = 800
start = time()
W = image.shape[1]
seams = find_seam(image, W_new - W)
end = time()
print('Time of finding seams is '+str(end-start))

seam_map = image.copy()
H_S,W_S = seams.shape
for seam in seams:
    for i in range(W_S):
        seam_map[i,int(seam[i])] = np.array([1,0,0])
plt.imshow(seam_map)
plt.show()

输出为:
在这里插入图片描述
查看放大效果:

from carving_seam import enlarge


W_new = 800
W = image.shape[1]
start = time()
out = enlarge(image, W_new)
end = time()

# Can take around 20 seconds
print("Enlarging width from %d to %d: %f seconds." \
      % (W, W_new, end - start))

plt.subplot(2, 1, 1)
plt.title('Original')
plt.imshow(image)

plt.subplot(2, 1, 2)
plt.title('Resized')
plt.imshow(out)

plt.show()

输出为:
在这里插入图片描述
我们可以在令一张图片上查看缩小和放大的效果:

###Enlarge another image
# Load image
img2 = io.imread('wave.jpg')
img2 = util.img_as_float(img2)


plt.subplot(311)
plt.title('Original Image')
plt.imshow(img2)

out = reduce(img2, 300)
plt.subplot(312)
plt.title('Reduced')
plt.imshow(out)

out = enlarge(img2, 800)
plt.subplot(313)
plt.title('Enlarged')
plt.imshow(out)
plt.show()

输出为:
在这里插入图片描述
二、Forward Energy
当我们使用Seam_Carving算法时,我们移除最低的能量像素并保留最高的能量像素。因此,平均图像能量增加,可能导致伪影和锯齿边缘。这里的解决方法为:考虑由于移除seam后,产生的新的邻接像素之间的差。我们在原递推公式加上约束项,让邻接像素的差尽可能小,这样我们就可以尽可能消除伪影和锯齿边缘。如图所示:
在这里插入图片描述
这样递推公式为:
M ( i , j ) = E ( i , j ) + m i n ( M ( i − 1 , j − 1 ) + C L ( i , j ) , M ( i − 1 , j ) + C U ( i , j ) , M ( i − 1 , j + 1 ) + C R ( i , j ) ) M(i,j)=E(i,j)+min(M(i-1,j-1)+C_L(i,j),M(i-1,j)+C_U(i,j),M(i-1,j+1)+C_R(i,j)) M(i,j)=E(i,j)+min(M(i1,j1)+CL(i,j),M(i1,j)+CU(i,j),M(i1,j+1)+CR(i,j))
其中:
C L ( i , j ) = ∣ I ( i − 1 , j ) − I ( i , j − 1 ) ∣ + ∣ I ( i , j − 1 ) − I ( i , j + 1 ) ∣ C_L(i,j)=|I(i-1,j)-I(i,j-1)|+|I(i,j-1)-I(i,j+1)| CL(i,j)=I(i1,j)I(i,j1)+I(i,j1)I(i,j+1) C U ( i , j ) = ∣ I ( i , j − 1 ) − I ( i , j + 1 ) ∣ C_U(i,j)=|I(i,j-1)-I(i,j+1)| CU(i,j)=I(i,j1)I(i,j+1) C R ( i , j ) = ∣ I ( i , j − 1 ) − i ( i , j + 1 ) ∣ + ∣ I ( i , j + 1 ) − I ( i − 1 , j ) ∣ C_R(i,j)=|I(i,j-1)-i(i,j+1)|+|I(i,j+1)-I(i-1,j)| CR(i,j)=I(i,j1)i(i,j+1)+I(i,j+1)I(i1,j)
实际上上面的三个式子就是三种情况下由于移除seam所产生新的像素的邻接的差。Forward Energy的代价计算函数如下:

def compute_cost_forward(image,energy_map,axis=1):
    if axis==0:
        image = np.transpose(image,(1,0,2))
        energy_map = np.transpose(energy_map,(1,0,2))
    image = color.rgb2gray(image)
    H,W = image.shape
    cost = np.zeros((H,W))
    cost[0] = energy_map[0]
    paths = np.zeros((H,W))
    for i in range(1,W-1):
        cost[0,i] = cost[0,i] + np.abs(image[0,i-1] - image[0,i+1])
    cost[0,0] = energy_map[0,0]
    cost[0,W-1] = energy_map[0,W-1]
    for i in range(1,H):
        for j in range(W):
            if j ==0:
                cost_list = np.array([cost[i-1,0],cost[i-1,1]+np.abs(image[i-1,0]-image[i,1])])
                index = np.argmin(cost_list)
                paths[i,j] = index
                cost[i,j]=energy_map[i,j]+cost_list[index]
            elif j==W-1:
                cost_list = np.array([cost[i-1,W-2]+np.abs(image[i-1,W-1]-image[i,W-2]),cost[i-1,W-1]])
                index = np.argmin(cost_list)
                paths[i,j] = index-1
                cost[i,j] = energy_map[i,j] + cost_list[index]
            else:
                diff_left = np.abs(image[i,j+1]-image[i,j-1])+np.abs(image[i-1,j]\
                                  -image[i,j-1])
                diff_mid = np.abs(image[i,j-1]-image[i,j+1])
                diff_right = np.abs(image[i,j+1]-image[i,j-1])+np.abs(image[i-1,j]\
                                   -image[i,j+1])
                cost_list = np.array([cost[i-1,j-1]+diff_left,cost[i-1,j]+diff_mid,\
                                    cost[i-1,j+1]+diff_right])
                index = np.argmin(cost_list)
                paths[i,j] = index-1
                cost[i,j] = energy_map[i,j] + cost_list[index]
    if axis==0:
        image = np.transpose(image,(1,0,2))
        energy_map = np.transpose(energy_map,(1,0,2))
    return paths,cost

这里需要注意,图像在边缘区域由于一些像素的缺失,所以需要单独处理。我们来比较compute_cost_forwardcompute_cost的效果:

from carving_seam import reduce
out = reduce(img_yolo, 200, axis=0)
plt.subplot(311)
plt.title('Original Image')
plt.imshow(img_yolo)

plt.subplot(312)
plt.title('Normal cost function')
plt.imshow(out)
# This step can take a very long time depending on your implementation.
out = reduce(img_yolo, 200, axis=0, cfunc=compute_cost_forward)
plt.subplot(313)
plt.title('Forward cost function')
plt.imshow(out)
plt.show()

输出为:
在这里插入图片描述
明显可以看出compute_cost_forward的代价计算方式对于图中恐龙头部的处理更好。

三、用Seam Carving移除图像中某物体
利用Seam Carving算法移除图中某一物体的主要思想为:将图像中物体所对应的像素的能量定义为一个较大的负数,以确保在利用Seam Carving算法时,使得物体所对应的像素能够删除;物体删除后,图像尺寸得以缩小,再利用上面提到的方法把图像扩大为原尺寸即可。代码如下:

def remove_object(image,mask):
    H,W,C= image.shape
    mask = mask.astype(int)
    regions = measure.regionprops(mask)
    region = regions[0]
    if region.bbox[2]-region.bbox[0]<region.bbox[3] - region.bbox[1]:
        image=np.transpose(image,(1,0,2))
        mask = np.transpose(mask,(1,0))
    image_gray = color.rgb2gray(image)
    count = 0
    image_new = image.copy()
    while not np.all(mask == 0):
        energy_map = energy_function(image_gray)
        energy_map = energy_map - energy_map * mask * (1000)
        paths,cost = compute_cost_forward(image_gray,energy_map)
        index = np.argmin(cost[-1])
        seam = backtrack_seam(paths,index)
        image_gray = remove_seam(image_gray,seam)
        image_new = remove_seam(image_new,seam)
        mask = remove_seam(mask,seam)
        count = count+1
    out = enlarge(image_new,image_new.shape[1]+count)
    if region.bbox[2]-region.bbox[0]<region.bbox[3] - region.bbox[1]:
        out = np.transpose(out,(1,0,2))
    return out

需要注意的是这里我们还要输入一个想要删除的物体的mask,利用skimage.measure.regionprops函数和mask得到图中将要删除物体的位置(最上,最下,最左,最右坐标),然后如果最上的位置坐标减去最下的位置坐标大于最右位置坐标减去最左位置坐标,则说明我们删除沿着从左到右的方向删除seam的数目较少,计算较为简便,那么我们则翻转图像:
from carving_seam import remove_object

out = remove_object(image, mask)
print(out.shape)
plt.subplot(2, 2, 1)
plt.title('Original Image')
plt.imshow(image)

plt.subplot(2, 2, 2)
plt.title('Mask of the object to remove')
plt.imshow(mask)

plt.subplot(2, 2, 3)
plt.title('Image with object removed')
plt.imshow(out)

plt.show()

得到:
在这里插入图片描述
我们可以看见删除房子物体后效果并不是特别好,这主要是由于我们沿着从左到右的方向删除seam,如果这个seam包含房子所对应的像素,则房子右边天空所对应的像素不能得到很好保留。为了验证这个说法我们沿着从上到下的方向删除seam:

def remove_object1(image,mask):
    H,W,C= image.shape
    mask = mask.astype(int)
    image_gray = color.rgb2gray(image)
    count = 0
    image_new = image.copy()
    while not np.all(mask == 0):
        energy_map = energy_function(image_gray)
        energy_map = energy_map - energy_map * mask * (1000)
        paths,cost = compute_cost_forward(image_gray,energy_map)
        index = np.argmin(cost[-1])
        seam = backtrack_seam(paths,index)
        image_gray = remove_seam(image_gray,seam)
        image_new = remove_seam(image_new,seam)
        mask = remove_seam(mask,seam)
        count = count+1
    out = enlarge(image_new,image_new.shape[1]+count)
    return out

这里我们只需对remove_object稍加修改即可:删除翻转图像的操作。查看输出图像:

# Use your function to remove the object
out = remove_object1(image, mask)
print(out.shape)
plt.subplot(2, 2, 1)
plt.title('Original Image')
plt.imshow(image)

plt.subplot(2, 2, 2)
plt.title('Mask of the object to remove')
plt.imshow(mask)

plt.subplot(2, 2, 3)
plt.title('Image with object removed')
plt.imshow(out)

plt.show()

得到:
在这里插入图片描述
这次我们看见效果确实比刚刚好,这次我们可以看见右边的天空;但实际上图片中物体稍稍被拉长。

  • 19
    点赞
  • 103
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
以下是基于Matlab实现的Seam Carving算法代码示例: ```matlab function I = seam_carving(I, n) % 输入: % I - 要进行Seam Carving的图像 % n - 要删除的Seam数量 % 输出: % I - Seam Carving处理后的图像 for i = 1:n % 计算能量函数 E = energy_function(I); % 计算Seam S = find_seam(E); % 删除Seam I = remove_seam(I, S); end end function E = energy_function(I) % 输入: % I - 要计算能量函数的图像 % 输出: % E - 计算得到的能量函数 % 计算灰度值 Igray = rgb2gray(I); % 计算Sobel算子 dx = [-1 0 1; -2 0 2; -1 0 1]; dy = [-1 -2 -1; 0 0 0; 1 2 1]; % 计算水平方向和竖直方向的梯度 Gx = imfilter(double(Igray), dx); Gy = imfilter(double(Igray), dy); % 计算能量函数 E = abs(Gx) + abs(Gy); end function S = find_seam(E) % 输入: % E - 要计算Seam的能量函数 % 输出: % S - 计算得到的Seam % 初始化Seam矩阵 [height, width] = size(E); S = zeros(height, width); % 第一行的Seam等于能量函数 S(1, :) = E(1, :); % 计算每个像素的Seam for i = 2:height for j = 1:width % 处理边界情况 if j == 1 S(i, j) = E(i, j) + min(S(i-1, j), S(i-1, j+1)); elseif j == width S(i, j) = E(i, j) + min(S(i-1, j-1), S(i-1, j)); else S(i, j) = E(i, j) + min([S(i-1, j-1), S(i-1, j), S(i-1, j+1)]); end end end end function I = remove_seam(I, S) % 输入: % I - 要删除Seam的图像 % S - 要删除的Seam % 输出: % I - 删除Seam后的图像 % 初始化新图像 [height, width, channels] = size(I); I_new = zeros(height, width-1, channels, 'uint8'); % 找到最小Seam的位置 [~, idx] = min(S(end, :)); % 复制新图像 for c = 1:channels for i = 1:height if idx == 1 I_new(i, :, c) = I(i, 2以下是seam carving算法的MATLAB代码: ```matlab function [Ic, T] = seam_carving(I, nr, nc) I = im2double(I); [Sr, Sc] = computeEnergy(I); T = zeros(nr+1, nc+1); for i = 2:nr+1 for j = 2:nc+1 if j == 2 T(i,j) = min(T(i-1,j), T(i-1,j+1)) + Sr(i-1,j-1); elseif j == nc+1 T(i,j) = min(T(i-1,j-1), T(i-1,j)) + Sr(i-1,j-1); else T(i,j) = min([T(i-1,j-1), T(i-1,j), T(i-1,j+1)]) + Sr(i-1,j-1); end end end Ic = zeros(size(I,1), size(I,2), nc); for j = 1:nc [M, Ix] = min(T(:,j+1)); Ic(:,:,j) = removeSeam(I(:,:,j), Ix-1); end end function [Sr, Sc] = computeEnergy(I) Ig = rgb2gray(I); hx = [-1, 0, 1]; hy = -hx'; Ix = conv2(Ig, hx, 'same'); Iy = conv2(Ig, hy, 'same'); Sr = abs(Ix) + abs(Iy); Sc = Sr; end function Ic = removeSeam(I, idx) [m,n] = size(I); Ic = zeros(m, n-1); Ic(:,1:idx-1,:) = I(:,1:idx-1,:); Ic(:,idx:end,:) = I(:,idx+1:end,:); end ``` 这个代码实现了基本的seam carving算法,可以输入原始图像 `I`,要缩减的行数 `nr` 和要缩减的列数 `nc`,然后输出缩减后的图像 `Ic` 以及每个像素对应的能量 `T`。函数 `computeEnergy` 计算了图像每个像素的能量,并返回 `Sr` 和 `Sc` 分别表示每个像素在行方向和列方向的能量。函数 `removeSeam` 移除给定索引的seam。以下是使用Matlab实现Seam Carving算法的代码: 1. 导入图像和初始化能量矩阵 ``` % 导入图像 img = imread('image.jpg'); % 将图像转换为灰度图 grayImg = rgb2gray(img); % 初始化能量矩阵 energyMatrix = double(edge(grayImg, 'canny')); ``` 2. 计算每个像素的能量值 ``` for i = 2:size(grayImg, 1) for j = 2:size(grayImg, 2) % 计算像素(i,j)的能量值 energyMatrix(i,j) = energyMatrix(i,j) + min([energyMatrix(i-1,j-1), energyMatrix(i-1,j), energyMatrix(i-1,j+1)]); end end ``` 3. 找到能量最小的Seam路径 ``` % 找到能量最小的Seam路径 [minEnergy, seamIdx] = min(energyMatrix(size(grayImg, 1), :)); for i = size(grayImg, 1)-1:-1:1 if seamIdx(i+1) == 1 % 处理边缘情况 [~, minIdx] = min([energyMatrix(i, seamIdx(i+1)), energyMatrix(i, seamIdx(i+1)+1)]); seamIdx(i) = seamIdx(i+1) + minIdx - 1; elseif seamIdx(i+1) == size(grayImg, 2) % 处理边缘情况 [~, minIdx] = min([energyMatrix(i, seamIdx(i+1)-1), energyMatrix(i, seamIdx(i+1))]); seamIdx(i) = seamIdx(i+1) + minIdx - 2; else [~, minIdx] = min([energyMatrix(i, seamIdx(i+1)-1), energyMatrix(i, seamIdx(i+1)), energyMatrix(i, seamIdx(i+1)+1)]); seamIdx(i) = seamIdx(i+1) + minIdx - 2; end end ``` 4. 删除Seam路径上的像素 ``` % 删除Seam路径上的像素 for i = 1:size(grayImg, 1) img(i, seamIdx(i):end-1, :) = img(i, seamIdx(i)+1:end, :); end img = img(:, 1:end-1, :); ``` 以上是Seam Carving算法的简单实现,你可以根据需要进一步优化和修改代码。以下是一个简单的 Seam Carving 算法的 Matlab 代码: ``` % 读取输入图像 img = imread('input.jpg'); % 设置缩放比例 scale = 0.5; % 计算目标图像大小 targetSize = round(scale * size(img)); % 迭代移除像素,直到达到目标大小 while size(img,1) > targetSize(1) || size(img,2) > targetSize(2) % 计算能量图像 energy = rgb2gray(img); energy = imgradient(energy); % 计算累计能量 M = cumsum(energy, 1); M = cumsum(M, 2); % 计算最小能量路径 [~,idx] = min(M(end,:), [], 2); seam = backtrack_seam(M, idx); % 移除路径 img = remove_seam(img, seam); end % 输出结果 imwrite(img, 'output.jpg'); ``` 其中,`backtrack_seam` 和 `remove_seam` 是两个自定义的函数,分别用于回溯最小能量路径和移除路径。Seam Carving是一种图像缩放算法,它可以通过移除图像中的不重要像素来缩小图像。以下是一些用MATLAB实现Seam Carving算法的代码示例: 1. 计算能量图 ``` function energyImg = energy_img(im) im = im2double(im); dx = [-1, 0, 1; -2, 0, 2; -1, 0, 1]; dy = dx'; Ix = conv2(im, dx, 'same'); Iy = conv2(im, dy, 'same'); energyImg = sqrt(Ix.^2 + Iy.^2); end ``` 2. 选择能量最小的seam ``` function seam = find_seam(energyImg) [rows, cols] = size(energyImg); M = energyImg; for i = 2:rows for j = 1:cols if j == 1 M(i,j) = energyImg(i,j) + min(M(i-1,j), M(i-1,j+1)); elseif j == cols M(i,j) = energyImg(i,j) + min(M(i-1,j-1), M(i-1,j)); else M(i,j) = energyImg(i,j) + min([M(i-1,j-1), M(i-1,j), M(i-1,j+1)]); end end end [~,ind] = min(M(rows,:)); seam = zeros(rows,1); seam(rows) = ind; for i = rows-1:-1:1 if seam(i+1) == 1 [~,m] = min(M(i, seam(i+1):seam(i+1)+1)); seam(i) = m + seam(i+1) - 1; elseif seam(i+1) == cols [~,m] = min(M(i, seam(i+1)-1:seam(i+1))); seam(i) = m + seam(i+1) - 2; else [~,m] = min(M(i, seam(i+1)-1:seam(i+1)+1)); seam(i) = m + seam(i+1) - 2; end end end ``` 3. 移除能量最小的seam ``` function imOut = reduce_width(im, numCols) for i = 1:numCols energyImg = energy_img(im); seam = find_seam(energyImg); im = remove_seam(im, seam); end imOut = im; end function imOut = remove_seam(im, seam) [rows,cols,~] = size(im); for i = 1:rows im(i, seam(i):cols-1,:) = im(i, seam(i)+1:cols,:); end imOut = im(:,1:cols-1,:); end ``` 这些代码实现了Seam Carving算法的一个基本版本,可以在MATLAB中使用。需要注意的是,这里的代码只实现了图像宽度的缩减,如果需要实现高度的缩减,需要做一些修改。以下是使用Matlab实现的Seam Carving算法代码示例: ``` % 读取图像 I = imread('image.jpg'); % 设定需要缩减或扩展的宽度或高度 dWidth = -50; dHeight = 0; % 重复执行以下步骤,直到达到所需的图像大小 while dWidth ~= 0 || dHeight ~= 0 % 计算能量函数 E = energy_function(I); % 执行Seam Carving if dWidth < 0 [I,~] = reduce_width(I,E,-dWidth); elseif dWidth > 0 [I,~] = increase_width(I,E,dWidth); elseif dHeight < 0 [I,~] = reduce_height(I,E,-dHeight); elseif dHeight > 0 [I,~] = increase_height(I,E,dHeight); end % 更新所需的宽度和高度 dWidth = dWidth + size(I,2) - size(I,1); dHeight = dHeight + size(I,1) - size(I,2); end % 定义能量函数 function E = energy_function(I) % 将图像转换为灰度图像 I_gray = rgb2gray(I); % 计算梯度幅值 [Gx,Gy] = imgradientxy(I_gray); G = abs(Gx) + abs(Gy); % 将边缘区域的梯度幅值增加,以便在Seam Carving过程中尽可能避免删除这些区域的像素 G = G + edge(I_gray); E = G; end % 执行Seam Carving的函数,以减少宽度 function [I,E_removed] = reduce_width(I,E,num) for i = 1:num % 计算每行像素的最小Seam M = cummin_seam_map(E, 'horizontal'); % 删除最小Seam中的像素 [I,E_removed] = remove_seam(I,M,'horizontal'); % 更新能量函数 E = energy_function(I); end end % 执行Seam Carving的函数,以增加宽度 function [I,E_added] = increase_width(I,E,num) for i = 1:num % 计算每行像素的最小Seam M = cummin_seam_map(E, 'horizontal'); % 插入最小Seam中的像素 [I,E_added] = insert_seam(I,M,'horizontal'); % 更新能量函数 E = energy_function(I); end end % 执行Seam Carving的函数,以减少高度 function [I,E_removed] = reduce_height(I,E,num) for i = 1:num % 计算每列像素的最小Seam M = cummin_seam_map(E, 'vertical'); % 删除最小Seam中的像素 [I,E_removed] = remove_seam(I,M,'vertical'); % 更新能量函数 E = energy_function(I); end end % 执行Seam Carving的函数,以增加高以下是使用Matlab实现的seam carving算法的示例代码: ```matlab % 读取图像 img = imread('your_image_path'); % 选择图像大小的变化量 change_size = [-100, -50]; % 可以根据需要进行修改 % 对图像进行seam carving for i = 1:length(change_size) if change_size(i) < 0 % 缩小图像 for j = 1:abs(change_size(i)) energy_map = energy_map_function(img); % 计算能量图 seam_map = cumulative_minimum_energy_map(energy_map, 'HORIZONTAL'); % 计算最小累积能量图 seam = find_optimal_seam(seam_map); % 查找最佳seam img = remove_horizontal_seam(img, seam); % 移除seam end else % 放大图像 for j = 1:change_size(i) energy_map = energy_map_function(img); % 计算能量图 seam_map = cumulative_minimum_energy_map(energy_map, 'HORIZONTAL'); % 计算最小累积能量图 seam = find_optimal_seam(seam_map); % 查找最佳seam img = duplicate_horizontal_seam(img, seam); % 复制seam end end end % 显示处理后的图像 imshow(img); ``` 这里提供了一个简单的示例代码,具体实现可能需要根据自己的需求进行修改。 我无法提供Matlab代码的seam carving算法,但我可以提供一些关于该算法的基本信息。以下是基于Matlab的Seam Carving算法代码示例: ``` % 读取图像 img = imread('example.jpg'); % 将图像转换为灰度图像 gray_img = rgb2gray(img); % 设定宽度和高度缩小的目标值 target_width = 400; target_height = 300; % 计算需要删除的行数和列数 delta_rows = size(gray_img,1) - target_height; delta_cols = size(gray_img,2) - target_width; % 开始逐步删除像素 for i = 1:delta_rows+delta_cols % 计算能量图 energy_map = energy(gray_img); % 计算最小能量路径 min_energy_path = find_vertical_seam(energy_map); % 删除最小能量路径 gray_img = remove_vertical_seam(gray_img, min_energy_path); end % 显示处理后的图像 imshow(gray_img); ``` 注意,上述代码中的 `energy`、`find_vertical_seam` 和 `remove_vertical_seam` 函数需要另外定义。这些函数的实现可以在Seam Carving算法的相关文献中找到。以下是seam carving算法的Matlab代码示例: ``` % 读入图像 img = imread('your_image.jpg'); % 设置需要减少的宽度和高度像素数量 reduceWidth = 50; reduceHeight = 30; for i = 1:reduceWidth % 计算能量图 energyMap = energy_function(img); % 找到最小能量Seam seam = find_seam(energyMap); % 从图像中删除Seam img = remove_seam(img, seam); end for i = 1:reduceHeight % 转置图像,执行和宽度相同的过程 img = permute(img, [2 1 3]); energyMap = energy_function(img); seam = find_seam(energyMap); img = remove_seam(img, seam); img = permute(img, [2 1 3]); end % 展示结果图像 imshow(img); ``` 其中`energy_function`函数用于计算图像的能量,`find_seam`函数用于找到最小能量Seam,`remove_seam`函数用于删除Seam。这些函数的实现可以根据不同的实现方法进行调整。以下是seam carving算法的MATLAB代码示例: ``` function carved_img = seam_carving(img, new_size) % Input: img - 原始图像 % new_size - 期望的新图像大小,格式为 [宽, 高] % Output: carved_img - 经过seam carving算法处理后的图像 % 将图像转换为灰度图 if size(img, 3) == 3 img = rgb2gray(img); end % 计算能量图 energy_map = energy_function(img); % 循环缩减图像宽度 for i = 1:size(img, 2) - new_size(1) % 计算当前能量图中的seam seam = find_seam(energy_map); % 从图像中删除seam img(:, seam) = []; energy_map(:, seam) = []; % 更新能量图 energy_map = update_energy_map(img, energy_map, seam); end % 循环缩减图像高度 for i = 1:size(img, 1) - new_size(2) % 计算当前能量图中的seam seam = find_seam(energy_map.'); % 从图像中删除seam img(seam, :) = []; energy_map(seam, :) = []; % 更新能量图 energy_map = update_energy_map(img, energy_map.', seam).'; end % 返回处理后的图像 carved_img = img; end function energy_map = energy_function(img) % 计算能量图 % 计算图像梯度 gx = [-1, 0, 1; -2, 0, 2; -1, 0, 1]; gy = gx.'; Ix = imfilter(double(img), gx, 'replicate'); Iy = imfilter(double(img), gy, 'replicate'); % 计算能量值 energy_map = abs(Ix) + abs(Iy); end function seam = find_seam(energy_map) % 寻找能量最小的seam % 初始化 [rows, cols] = size(energy_map); M = energy_map; % 动态规划计算最小seam for i = 2:rows for j = 1:cols if j == 1 M(i, j) = energy_map(i, j) + min(M(i-1, j), M(i-1, j+1)); elseif j == cols M(i, j) = energy_map(i, j) + min(M(i-1, j-1), M(i-1, j)); else M(i, j) = energy_map(i, j) + min([M(i-1, j-1), M(i-1, j), M(i-1, j+1)]); end end end % 回溯最小seam路径 seam = zeros(rows, 1); [~, index] = min(M(rows, :)); seam(rows) = index; for i = rows-1:-1:1 if index == 1 [~, index] = min([M(i, index), M(i, index 这里有一些Matlab示例代码,用于实现Seam Carving算法:https://www.mathworks.com/matlabcentral/fileexchange/27374-seam-carving-implementation以下是 Seam Carving 算法的 MATLAB 代码示例: % 读取图像 img = imread('input.jpg'); % 将图像转换为能量图 energyImg = energy_image(img); % 循环指定删除的行数 for i = 1:100 % 计算每行像素的能量 M = cumulative_minimum_energy_map(energyImg, 'VERTICAL'); % 找到需要删除的像素 seam = find_vertical_seam(M); % 从图像中删除像素 img = remove_vertical_seam(img, seam); % 从能量图中删除像素 energyImg = remove_vertical_seam(energyImg, seam); end % 保存输出图像 imwrite(img, 'output.jpg'); 以上代码演示了如何使用 Seam Carving 算法来删除图像的垂直像素。需要注意的是,这只是一个简单的示例,实际使用中可能需要进行更多的参数调整和图像处理步骤。以下是seam carving算法的MATLAB代码示例: %% Seam Carving for Content-Aware Image Resizing % Load image I = imread('input.jpg'); % Convert to grayscale Igray = rgb2gray(I); % Compute energy map E = energy_map(Igray); % Perform seam carving to reduce width by 100 pixels Icarved = carve(I, E, 100); % Display result figure; imshow(Icarved); title('Seam Carving Result'); % Energy map function function E = energy_map(I) % Compute horizontal and vertical gradients hx = [-1, 0, 1; -2, 0, 2; -1, 0, 1]; hy = [-1, -2, -1; 0, 0, 0; 1, 2, 1]; Ix = imfilter(double(I), hx); Iy = imfilter(double(I), hy); % Compute energy map E = sqrt(Ix.^2 + Iy.^2); end % Carving function function Icarved = carve(I, E, pixels) % Convert energy map to cost map C = cumsum(E, 2); % Find optimal seams for i = 1:pixels M = C; M(2:end-1, :) = M(2:end-1, :) + min([M(1:end-2, :); M(2:end-1, :); M(3:end, :)]); [~, j] = min(M(end, :)); seam = j; for k = size(M, 1)-1:-1:1 j = j + find(M(k, j-1:j+1) == min(M(k, j-1:j+1))) - 2; seam(k) = j; end % Remove optimal seams for k = 1:size(I, 3) I(:, seam(k):end-1, k) = I(:, seam(k)+1:end, k); end C(:, seam(end)) = []; end % Return carved image Icarved = I; end 该代码将输入图像(input.jpg)转换为灰度图像,计算其能量图,并对其执行seam carving以将其宽度减小100像素。最后,显示结果图像(Seam Carving Result)。能量图由energy_map函数计算,seam carvingcarve函数执行。以下是使用Matlab编写的Seam Carving算法的代码示例: ``` %% 图像读取和显示 img = imread('image.jpg'); % 读取图像 imshow(img); % 显示原始图像 %% 设置参数 targetWidth = 300; % 目标宽度 targetHeight = 400; % 目标高度 numSeamsToRemove = size(img, 2) - targetWidth; % 需要移除的列数 %% 执行seam carving算法 for i = 1:numSeamsToRemove % 计算能量图 energy = computeEnergy(img); % 计算能量最小的seam seam = findSeam(energy); % 移除seam img = removeSeam(img, seam); end %% 显示结果 imshow(img); %% 计算能量图函数 function energy = computeEnergy(img) % 计算梯度 gray = rgb2gray(img); [gx, gy] = imgradientxy(gray, 'prewitt'); % 计算能量 energy = abs(gx) + abs(gy); end %% 查找最小seam函数 function seam = findSeam(energy) % 初始化 [rows, cols] = size(energy); seam = zeros(rows, 1); cost = zeros(rows, cols); cost(1, :) = energy(1, :); % 动态规划计算最小代价 for i = 2:rows for j = 1:cols if j == 1 [c, idx] = min([cost(i-1, j), cost(i-1, j+1)]); cost(i, j) = energy(i, j) + c; if idx == 1 seam(i) = j; else seam(i) = j + 1; end elseif j == cols [c, idx] = min([cost(i-1, j-1), cost(i-1, j)]); cost(i, j) = energy(i, j) + c; if idx == 1 seam(i) = j - 1; else seam(i) = j; end else [c, idx] = min([cost(i-1, j-1), cost(i-1, j), cost(i-1, j+1)]); cost(i, j) = energy(i, j) + c; if idx == 1 seam(i) = j - 1; elseif idx == 2 seam(i) = j; else seam(i) = j + 1; end end end end end %% 移除seam函数 function img = removeSeam(img, seam) [rows, cols, ~] = size(img); for i = 1:rows img(i, seam(i):cols-1, :) = img(i, seam(i)+1:cols, :); end img = img(:, 1:cols-1, :); end ``` 这是一个简单的Seam Carving算法实现,可以实现图像的宽度缩减。您可以根据需要进行修改和扩展。以下是使用MATLAB实现Seam Carving算法的代码: ```matlab function output = seamCarving(input, outputSize) %SEAMCARVING 用于调整图像大小的Seam Carving算法 % output = seamCarving(input, outputSize) 返回大小为outputSize的调整后的图像 % input为输入图像,outputSize为输出图像大小 % 示例:output = seamCarving(input, [new_width new_height]) % 将输入图像转换为灰度图像 if size(input, 3) == 3 input = rgb2gray(input); end % 转换为double类型 input = im2double(input); % 计算能量图像 energy = calcEnergy(input); % 重复移除seam,直到达到所需大小 for i = 1:abs(size(input, 2)-outputSize(2)) % 计算每列的能量 M = energy; for row = 2:size(M,1) for col = 1:size(M,2) if col == 1 M(row, col) = energy(row, col) + min([M(row-1, col), M(row-1, col+1)]); elseif col == size(M,2) M(row, col) = energy(row, col) + min([M(row-1, col-1), M(row-1, col)]); else M(row, col) = energy(row, col) + min([M(row-1, col-1), M(row-1, col), M(row-1, col+1)]); end end end % 找到最小能量seam [~,col] = min(M(end,:)); row = size(M,1); seam = zeros(size(M,1),1); seam(row) = col; for row = size(M,1)-1:-1:1 col = col + (randi(2)-1) - 1; col = max(1, col); col = min(size(M,2), col); seam(row) = col; end % 移除seam for row = 1:size(input,1) input(row, seam(row):end-1,:) = input(row, seam(row)+1:end,:); energy(row, seam(row):end-1) = energy(row, seam(row)+1:end); end input = input(:,1:end-1,:); energy = calcEnergy(input); end % 重复插入seam,直到达到所需大小 for i = 1:abs(size(input, 1)-outputSize(1)) % 计算每行的能量 M = energy'; for row = 2:size(M,1) for col = 1:size(M,2) if col == 1 M(row, col) = energy(col, row) + min([M(row-1, col), M(row-1, col+1)]); elseif col == size(M,2) M(row, col) = energy(col, row) + min([M(row-1, col-1), M(row-1, col)]); else M(row, col) = energy(col, row) + min([M(row-1, col-1), M(row-1, col), M(row-1, col+以下是seamcarving算法的MATLAB代码示例: ```matlab function Ic = seamcarving(I, n) % 将输入图像转换为双精度灰度图像 I = im2double(rgb2gray(I)); % 在图像中寻找缩小的尺寸 [m, ~] = size(I); r = m - n; % 循环删除每个水平和垂直方向的seam for i = 1:r % 计算能量函数矩阵 E = energyfunc(I); % 计算最小seam并删除它 mask = findseam(E); I(mask) = []; % 水平方向同理 I = I'; E = energyfunc(I); mask = findseam(E); I(mask) = []; I = I'; end % 返回缩小后的图像 Ic = I; end % 能量函数计算 function E = energyfunc(I) % Sobel滤波器 h = [-1, 0, 1; -2, 0, 2; -1, 0, 1]; dx = imfilter(I, h, 'replicate'); dy = imfilter(I, h', 'replicate'); E = sqrt(dx.^2 + dy.^2); end % 寻找最小seam function mask = findseam(E) [m, n] = size(E); % 初始化掩码和累计能量 mask = zeros(m, 1); C = E(1, :); % 计算累计能量 for i = 2:m L = [inf, C(1:end-1)]; R = [C(2:end), inf]; M = [L; C; R]; [minC, idx] = min(M); C = E(i, :) + minC; mask(i) = idx(find(minC == C)); end end ```以下是seam carving算法的Matlab代码: ```matlab function Ic = seam_carving(I, nr, nc) % I: input image % nr: number of rows to remove % nc: number of columns to remove % Ic: output image Ic = I; for i = 1:nr e = energy_rgb(Ic); S = cumulative_min_energy_map(e, 'HORIZONTAL'); horizontal_seam = find_horizontal_seam(S); Ic = reduce_horizontal_seam(Ic, horizontal_seam); end for i = 1:nc e = energy_rgb(Ic); S = cumulative_min_energy_map(e, 'VERTICAL'); vertical_seam = find_vertical_seam(S); Ic = reduce_vertical_seam(Ic, vertical_seam); end ``` 这段代码实现了Seam Carving算法,通过迭代地对图像进行水平和垂直方向的Seam Carving操作,来实现对图像的缩放。其中,energy_rgb函数计算每个像素的能量值,cumulative_min_energy_map函数计算最小累计能量图,find_horizontal_seam和find_vertical_seam函数分别寻找水平和垂直方向上的Seam,reduce_horizontal_seam和reduce_vertical_seam函数分别实现水平和垂直方向上的Seam Carving操作,用于去除图像中的Seam。以下是用MATLAB实现Seam Carving算法的示例代码: ```matlab function img_resized = seam_carving(img, new_size) % Input: % img: 输入图像 % new_size: 调整后的大小(新宽度,新高度) % Output: % img_resized: 调整后的图像 % 转换为灰度图 if size(img, 3) == 3 img = rgb2gray(img); end % 计算能量图 energy_map = energy_func(img); % 调整大小 for i = 1:abs(size(img, 2) - new_size(1)) % 计算最小能量路径 path = find_min_path(energy_map); % 移除路径上的像素 img = remove_path(img, path); % 更新能量图 energy_map = energy_func(img); end for i = 1:abs(size(img, 1) - new_size(2)) % 计算最小能量路径 path = find_min_path(energy_map'); % 移除路径上的像素 img = remove_path(img, path'); % 更新能量图 energy_map = energy_func(img); end img_resized = img; end function energy_map = energy_func(img) % 计算能量图 [Gx, Gy] = imgradientxy(img); energy_map = abs(Gx) + abs(Gy); end function path = find_min_path(energy_map) % 计算最小能量路径 [row, col] = size(energy_map); M = energy_map; for i = 2:row for j = 1:col if j == 1 M(i, j) = energy_map(i, j) + min(M(i-1, j), M(i-1, j+1)); elseif j == col M(i, j) = energy_map(i, j) + min(M(i-1, j-1), M(i-1, j)); else M(i, j) = energy_map(i, j) + min([M(i-1, j-1), M(i-1, j), M(i-1, j+1)]); end end end [~, idx] = min(M(row, :)); path = zeros(row, 1); path(row) = idx; for i = row-1:-1:1 if path(i+1) == 1 [~, idx] = min(M(i, 1:2)); path(i) = idx; elseif path(i+1) == col [~, idx] = min(M(i, col-1:col)); path(i) = idx + col - 2; else [~, idx] = min(M(i, path(i+1)-1:path(i+1)+1)); path(i) = idx + path(i+1) - 2; end end end function img = remove_path(img, path) % 移除路径上的像素 [row, col] = size(img); for i = 1:row img(i, path(i):col-1) = img(i, path(i)+1:col); end img(:, col) = []; end ``` 这个算法可以根据给定的新尺寸,动态地调整图以下是使用MATLAB编写的seam carving算法代码: ``` function [I_seam_carved] = seam_carving(I, new_width, new_height) % I:待处理图像 % new_width:缩小后的宽度 % new_height:缩小后的高度 % I_seam_carved:处理后的图像 % 转换成灰度图像 I = rgb2gray(I); % 获取原始图像的宽度和高度 [height, width] = size(I); % 计算宽度和高度的缩放比例 width_scale = new_width / width; height_scale = new_height / height; % 如果缩放比例小于1,说明需要缩小图像,执行缩小操作 if (width_scale < 1) || (height_scale < 1) % 计算要移除的列数和行数 remove_cols = width - new_width; remove_rows = height - new_height; % 循环移除列 for i = 1:remove_cols % 计算能量矩阵 energy = energy_function(I); % 计算最小能量路径 seam = minimum_energy_seam(energy); % 移除最小能量路径 I = remove_seam(I, seam); end % 循环移除行 for i = 1:remove_rows % 计算能量矩阵 energy = energy_function(I); % 计算最小能量路径 seam = minimum_energy_seam(energy); % 移除最小能量路径 I = remove_seam(I', seam)'; end % 如果缩放比例大于等于1,说明需要放大图像,执行放大操作 else % 计算要增加的列数和行数 add_cols = new_width - width; add_rows = new_height - height; % 循环增加列 for i = 1:add_cols % 计算能量矩阵 energy = energy_function(I); % 计算最小能量路径 seam = minimum_energy_seam(energy); % 增加最小能量路径 I = add_seam(I, seam); end % 循环增加行 for i = 1:add_rows % 计算能量矩阵 energy = energy_function(I); % 计算最小能量路径 seam = minimum_energy_seam(energy); % 增加最小能量路径 I = add_seam(I', seam)'; end end % 返回处理后的图像 I_seam_carved = I; end function [energy] = energy_function(I) % 计算能量矩阵 % I:输入图像 % energy:能量矩阵 % 计算梯度 [Gx, Gy] = imgradientxy(I, 'prewitt'); % 计算能量 energy = abs(Gx) + abs(Gy); end function [seam]以下是 Seam Carving 算法的 MATLAB 代码示例: ``` % 读取图片 image = imread('image.jpg'); % 定义需要删除的行和列数 rows_to_delete = 50; cols_to_delete = 50; % 计算能量图 energy = energy_image(image); % 循环删除行 for i = 1:rows_to_delete % 计算能量图 energy = energy_image(image); % 计算最小能量路径 path = find_minimal_path(energy); % 删除路径 image = remove_seam(image, path); end % 循环删除列 for i = 1:cols_to_delete % 转置图片 image_transpose = permute(image, [2 1 3]); % 计算能量图 energy = energy_image(image_transpose); % 计算最小能量路径 path = find_minimal_path(energy); % 删除路径 image_transpose = remove_seam(image_transpose, path); % 转置图片回来 image = permute(image_transpose, [2 1 3]); end % 显示结果 imshow(image); ``` 这个示例代码演示了如何使用 Seam Carving 算法来删除一张图片的指定数量的行和列。其中,`energy_image` 函数用于计算能量图,`find_minimal_path` 函数用于计算最小能量路径,`remove_seam` 函数用于删除路径。你可以根据自己的需要进行修改和调整。以下是使用MATLAB实现Seam Carving算法的代码示例: 1. 导入图像 ```matlab img = imread('image.jpg'); ``` 2. 缩小图像 ```matlab scale = 0.5; % 设置缩小比例 for i = 1:round(log(1/scale)/log(2)) energy = energyFunc(img); % 计算图像能量 seam = findSeam(energy); % 找到最小能量缝 img = removeSeam(img, seam); % 移除缝 end ``` 3. 计算能量函数 ```matlab function energy = energyFunc(img) gray = double(rgb2gray(img)); [x_grad, y_grad] = gradient(gray); energy = abs(x_grad) + abs(y_grad); end ``` 4. 找到最小能量缝 ```matlab function seam = findSeam(energy) [h, w] = size(energy); dp = energy; for i = 2:h for j = 1:w if j == 1 dp(i, j) = energy(i, j) + min(dp(i-1, j), dp(i-1, j+1)); elseif j == w dp(i, j) = energy(i, j) + min(dp(i-1, j-1), dp(i-1, j)); else dp(i, j) = energy(i, j) + min([dp(i-1, j-1), dp(i-1, j), dp(i-1, j+1)]); end end end [~, idx] = min(dp(h, :)); seam = zeros(h, 1); seam(h) = idx; for i = h-1:-1:1 if seam(i+1) == 1 [~, idx] = min(dp(i, seam(i+1):seam(i+1)+1)); seam(i) = idx + seam(i+1) - 1; elseif seam(i+1) == w [~, idx] = min(dp(i, seam(i+1)-1:seam(i+1))); seam(i) = idx + seam(i+1) - 2; else [~, idx] = min(dp(i, seam(i+1)-1:seam(i+1)+1)); seam(i) = idx + seam(i+1) - 2; end end end ``` 5. 移除最小能量缝 ```matlab function img = removeSeam(img, seam) [h, w, ~] = size(img); for i = 1:h img(i, seam(i):w-1, :) = img(i, seam(i)+1:w, :); end img = img(:, 1:w-1, :); end ``` 请注意,以上仅是Seam Carving算法的简单实现,可能存在一些性能和质量问题。以下是 Seam Carving 算法的 MATLAB 代码示例: ``` % 读入图像 img = imread('input.jpg'); figure,imshow(img); % 缩放比例 scale = 0.5; % 确定缩放后的图像大小 new_width = round(size(img, 2) * scale); new_height = round(size(img, 1) * scale); % 循环进行 seam carving 操作,缩放图像 for i = 1:size(img, 2) - new_width energy_map = energy(img); seam = find_seam(energy_map); img = remove_seam(img, seam); end for i = 1:size(img, 1) - new_height energy_map = energy(img); seam = find_seam(energy_map); img = remove_seam(img', seam)'; end % 显示缩放后的图像 figure,imshow(img); ``` 其中,`energy` 函数计算图像的能量值,`find_seam` 函数找到能量值最小的缝线,`remove_seam` 函数移除缝线,并返回新的图像。通过不断循环进行 seam carving 操作,实现图像的缩放。最后,显示缩放后的图像。以下是使用Matlab实现Seam Carving算法的示例代码: ```matlab % 导入图像 img = imread('your_image.jpg'); % 缩小或放大图像的宽度 scale = 0.5; % 设置缩放后的图像尺寸 new_width = round(scale*size(img,2)); new_height = size(img,1); % 重复缩放操作直到达到目标尺寸 while size(img,2) > new_width % 计算能量图 energy_map = energy_func(img); % 计算并删除最小能量seam seam = find_seam(energy_map); img = remove_seam(img, seam); end % 显示结果图像 imshow(img); ``` 其中,`energy_func`是计算能量图的函数,`find_seam`是查找最小能量seam的函数,`remove_seam`是删除seam的函数。这些函数的具体实现可以根据具体需求进行编写。 您可以在网上搜索关于seamcarving算法matlab代码的相关信息,也可以在MATLAB的官网上查找相关的资源来获取seamcarving算法的matlab代码。以下是使用Matlab编写的Seam Carving算法的示例代码: % 读取图像 I = imread('your_image.jpg'); % 将图像转为灰度图 Igray = rgb2gray(I); % 计算能量图 E = energy(Igray); % 选择要删除的像素数量 numPixelsToRemove = 100; for i = 1:numPixelsToRemove % 计算最小能量路径 M = cumulative_minimum_energy_map(E, 'HORIZONTAL'); horizontalSeam = find_horizontal_seam(M); % 删除路径上的像素 Igray = remove_horizontal_seam(Igray, horizontalSeam); E = energy(Igray); end % 显示调整后的图像 imshow(Igray); 请注意,这只是一个示例代码,您需要根据您的具体需求进行修改和调整。同时,您需要自己编写能量函数和路径查找函数,这些函数可以根据Seam Carving算法的原理来编写。以下是使用Matlab实现Seam Carving算法的代码: ```matlab function [I_seamcarved] = seamcarving(I, num_cols, num_rows) % 对于输入的图像I,使用Seam Carving算法删除或添加列和行,使其变为num_cols列和num_rows行 % I: 输入图像 % num_cols: 目标列数 % num_rows: 目标行数 % I_seamcarved: 输出Seam Carving调整大小后的图像 I_seamcarved = I; for i = 1:(size(I,2)-num_cols) % 找到能量最小的Seam并删除 E = energy(I_seamcarved); S = find_seam(E); I_seamcarved = remove_seam(I_seamcarved, S); end for i = 1:(size(I,1)-num_rows) % 转置图像以进行行删除 I_seamcarved_transposed = permute(I_seamcarved, [2 1 3]); % 找到能量最小的Seam并删除 E = energy(I_seamcarved_transposed); S = find_seam(E); I_seamcarved_transposed = remove_seam(I_seamcarved_transposed, S); % 再次转置以还原原始图像方向 I_seamcarved = permute(I_seamcarved_transposed, [2 1 3]); end end function [E] = energy(I) % 计算每个像素的能量值 % I: 输入图像 % E: 输出能量图像 % 灰度化 Igray = rgb2gray(I); % Sobel算子计算梯度 Gx = imfilter(double(Igray), [-1 0 1; -2 0 2; -1 0 1], 'replicate'); Gy = imfilter(double(Igray), [-1 -2 -1; 0 0 0; 1 2 1], 'replicate'); % 计算能量值 E = abs(Gx) + abs(Gy); end function [S] = find_seam(E) % 找到能量最小的Seam % E: 输入能量图像 % S: 输出Seam % 初始化Seam S = zeros(size(E,1),1); % 计算Seam路径 M = padarray(E, [0 1], realmax('double')); % 最左列和最右列设置为无穷大 for i = 2:size(M,1) for j = 2:(size(M,2)-1) M(i,j) = M(i,j) + min([M(i-1,j-1), M(i-1,j), M(i-1,j+1)]); end end % 找到能量最小的路径 [~, idx] = min(M(end,:)); S(end) = idx - 1; for i = (size(S,1)-1):-1:1 [~, idx] = min([M(i,idx-1), M(i,idx), M(i,idx+1)]); S(i) = idx - 2; end end function [I_seam以下是使用Matlab编写的Seam Carving算法代码: ```matlab function Ic = seamcarving(I, n) % I: 输入图像 % n: 要移除的像素数 % 将输入图像转换为double类型 I = im2double(I); for i = 1:n % 计算能量图 E = energy_func(I); % 计算最小能量路径 M = cumMinEngHor(E); T = findhorizontalseam(M); % 移除最小能量路径 for j = 1:size(I, 3) I(:,T(j),j) = []; end end Ic = I; end function E = energy_func(I) % 计算能量图 Ix = conv2(I, [-1 0 1], 'same'); Iy = conv2(I, [-1; 0; 1], 'same'); E = abs(Ix) + abs(Iy); end function M = cumMinEngHor(E) % 计算水平方向上的累计最小能量图 M = zeros(size(E)); M(1,:) = E(1,:); for i = 2:size(E,1) for j = 1:size(E,2) if j == 1 M(i,j) = E(i,j) + min([M(i-1,j), M(i-1,j+1)]); elseif j == size(E,2) M(i,j) = E(i,j) + min([M(i-1,j-1), M(i-1,j)]); else M(i,j) = E(i,j) + min([M(i-1,j-1), M(i-1,j), M(i-1,j+1)]); end end end end function T = findhorizontalseam(M) % 找到水平方向上的最小能量路径 [~,ind] = min(M(end,:)); T = zeros(size(M,1),1); T(end) = ind; for i = size(M,1)-1:-1:1 if T(i+1) == 1 [~,ind] = min([M(i,T(i+1)), M(i,T(i+1)+1)]); T(i) = T(i+1) + ind - 1; elseif T(i+1) == size(M,2) [~,ind] = min([M(i,T(i+1)-1), M(i,T(i+1))]); T(i) = T(i+1) + ind - 2; else [~,ind] = min([M(i,T(i+1)-1), M(i,T(i+1)), M(i,T(i+1)+1)]); T(i) = T(i+1) + ind - 2; end end end ``` 该算法实现了在水平方向上移除图像中的最小能量路径,并重复这个过程,直到达到所需的像素数量。下面是使用Matlab实现的Seam Carving算法的示例代码: ``` %% 读入图像并初始化 I = imread('input.jpg'); M = size(I,1); N = size(I,2); energyImg = energy_image(I); %% Seam Carving for i = 1:50 %% 计算能量图像和累积能量图像 energyImg = energy_image(I); cumEnergyMap = cumulative_min_energy_map(energyImg, 'VERTICAL'); %% 找到最小能量的垂直Seam verticalSeam = find_vertical_seam(cumEnergyMap); %% 在图像中删除Seam I = remove_vertical_seam(I, verticalSeam); end %% 显示结果 imshow(I); ``` 在这个示例代码中,我们首先读入一个名为“input.jpg”的图像,并计算其能量图像。然后,我们进行50次Seam Carving操作,每次都计算能量图像和累积能量图像,找到最小能量的垂直Seam,并在图像中删除该Seam。最后,我们显示处理后的图像。 请注意,这只是一个示例代码,实际应用中可能需要根据具体情况进行修改。此外,Seam Carving算法还有其他的实现方式和变体,需要根据具体需求进行选择。以下是Seam Carving算法的Matlab代码示例: %% 读取图像 I = imread('image.jpg'); %% 改变图像尺寸 scale_percent =以下是基于Matlab的Seam Carving算法的示例代码,供您参考: ``` function [I_seamcarved] = seamcarving(I, n, m) % I: 输入图像 % n: 输入图像的宽度缩减量(正数为缩减,负数为扩展) % m: 输入图像的高度缩减量(正数为缩减,负数为扩展) if (n > 0) % 宽度缩减 for i = 1:n I = im2double(I); energy_map = energy_map_fn(I); % 计算能量图 seam = find_seam(energy_map); % 寻找最小能量的seam I = remove_seam(I, seam); % 移除seam end elseif (n < 0) % 宽度扩展 for i = 1:abs(n) I = im2double(I); energy_map = energy_map_fn(I); % 计算能量图 seam = find_seam(energy_map); % 寻找最小能量的seam I = insert_seam(I, seam); % 插入seam end end if (m > 0) % 高度缩减 for i = 1:m I = im2double(I); energy_map = energy_map_fn(I'); % 计算能量图(转置) seam = find_seam(energy_map); % 寻找最小能量的seam I = remove_seam(I', seam)'; % 移除seam(再转置回来) end elseif (m < 0) % 高度扩展 for i = 1:abs(m) I = im2double(I); energy_map = energy_map_fn(I'); % 计算能量图(转置) seam = find_seam(energy_map); % 寻找最小能量的seam I = insert_seam(I', seam)'; % 插入seam(再转置回来) end end I_seamcarved = I; % 计算能量图 function [energy_map] = energy_map_fn(I) I_gray = rgb2gray(I); % 转换为灰度图 [Gx, Gy] = imgradientxy(I_gray); % 计算梯度 energy_map = abs(Gx) + abs(Gy); % 计算能量图 end % 寻找最小能量的seam function [seam] = find_seam(energy_map) [h, w] = size(energy_map); M = energy_map; for i = 2:h for j = 1:w if (j == 1) M(i,j) = energy_map(i,j) + min(M(i-1,j), M(i-1,j+1)); elseif (j == w) M(i,j) = energy_map(i,j) + min(M(i-1,j-1), M(i-1,j)); else M(i,j) = energy_map(i,j) + min(M(i-1,j-1), min(M(i-1,j), M(i-1,j+1))); end 答案:我可以提供一些关于SeamCarving算法matlab代码的参考资料,但是没有完整的代码可以提供。以下是基于Matlab的seam carving算法代码示例: ```matlab function [Ic, T] = seam_carving(I, d, mode) % I - input image % d - number of seams to remove (negative to add) % mode - 'horizontal' or 'vertical' I = im2double(I); [m, n, ~] = size(I); T = zeros(m, n); % Energy map M = zeros(m, n); % Minimum seam map % Compute energy map if strcmp(mode, 'horizontal') I = permute(I, [2 1 3]); end Ex = abs([diff(I, 1, 2) I(:,1,:) - I(:,end,:)]); % Compute energy map along x-axis Ey = abs([diff(I, 1, 1); I(1,:,:) - I(end,:,:)]); % Compute energy map along y-axis T = sum(Ex, 3) + sum(Ey, 3); % Find minimum seam M(1,:) = 1; for i = 2:m for j = 1:n if j == 1 [~, idx] = min(T(i-1, j:j+1)); M(i,j) = j + idx - 1; elseif j == n [~, idx] = min(T(i-1, j-1:j)); M(i,j) = j + idx - 2; else [~, idx] = min(T(i-1, j-1:j+1)); M(i,j) = j + idx - 2; end T(i,j) = T(i,j) + T(i-1, M(i,j)); end end % Remove or add seam Ic = zeros(m, n-d, 3); if d > 0 % Remove seam for k = 1:d [~, j] = min(T(end,:)); for i = m:-1:2 I(i, j:end-1, :) = I(i, j+1:end, :); M(i, j:end-1) = M(i, j+1:end) - 1; j = M(i, j); end I = I(:,1:end-1,:); T = zeros(m, n-k); M = zeros(m, n-k); Ex = abs([diff(I, 1, 2) I(:,1,:) - I(:,end,:)]); % Compute energy map along x-axis Ey = abs([diff(I, 1, 1); I(1,:,:) - I(end,:,:)]); % Compute energy map along y-axis T = sum(Ex, 3) + sum(Ey, 3); end Ic = I; elseif d < 0 % Add seam for k = 1:-d T2 = T; for j = 1:k [~, j2] = min(T2(end,:)); for i = m:-1:2 I(i, j2+1:end+1, :) = I(i, j2:end, :); M(i, j2+1:end+1) = M(i, j2:end) + 1; j2 = M(i, j2+1); end I(1,j2+1:end,:)=I(1,j2:end-1,:);%处理第一行以下是使用 MATLAB 实现 Seam Carving 的示例代码: ```matlab function [Ic, T] = seam_carving(I, r, c) % I:输入图像 % r:行数减少量 % c:列数减少量 % Ic:调整大小后的图像 以下是在 MATLAB 中实现 seam carving 算法的示例代码: ```matlab % 加载要处理的图像 img = imread('input.jpg'); % 指定要缩小的宽度和高度 new_width = 600; new_height = 400; % 将图像转换为灰度图像 gray_img = rgb2gray(img); % 计算能量图 energy_map = energy_fn(gray_img); % 根据能量图,计算每行或每列的最小能量路径 if new_width < size(img, 2) img = seam_carve_width(img, energy_map, size(img, 2) - new_width); end if new_height < size(img, 1) img = seam_carve_height(img, energy_map, size(img, 1) - new_height); end % 保存处理后的图像 imwrite(img, 'output.jpg'); % 定义计算能量图的函数 function energy_map = energy_fn(img) % 计算图像的梯度 [gx, gy] = imgradientxy(img); % 计算每个像素的梯度幅度 energy_map = abs(gx) + abs(gy); end % 定义删除宽度的函数 function img = seam_carve_width(img, energy_map, num_cols) for i = 1:num_cols % 计算最小能量路径 cumulative_map = cumulative_energy_map(energy_map); seam = find_seam(cumulative_map); % 从图像中删除路径 img = remove_seam(img, seam); energy_map = remove_seam(energy_map, seam); end end % 定义删除高度的函数 function img = seam_carve_height(img, energy_map, num_rows) % 将图像和能量图翻转,以便应用相同的函数 img = imrotate(img, 90); energy_map = imrotate(energy_map, 90); img = seam_carve_width(img, energy_map, num_rows); img = imrotate(img, -90); end % 定义计算累计能量图的函数 function cumulative_map = cumulative_energy_map(energy_map) [num_rows, num_cols] = size(energy_map); cumulative_map = zeros(num_rows, num_cols); % 将第一行复制到累计以下是使用MATLAB实现seam carving算法的示例代码: ``` % 读入原始图像 I = imread('input.jpg'); figure, imshow(I), title('Original Image'); % 缩放比例 scale = 0.5; % 缩放后的图像大小 sz = round(scale*size(I)); I_resized = imresize(I, sz); % 缩放后的图像大小 [nrows,ncols,~] = size(I_resized); % 能量函数计算 energyImage = energy_rgb(I_resized); % 按照能量图像进行seam carving numSeams = round(scale*size(I,2)); for i = 1:numSeams % 计算能量图像 energyImage = energy_rgb(I_resized); % 计算最小能量seam seamDirection = 'VERTICAL'; cumulativeEnergyMap = cumulative_minimum_energy_map(energyImage, seamDirection); seam = find_optimal_seam(cumulativeEnergyMap); % 在图像中删除seam I_resized = reduce_width(I_resized,seam); end % 显示结果 figure, imshow(I_resized), title('Resized Image'); ``` 其中,`energy_rgb`函数计算图像的能量值,`cumulative_minimum_energy_map`函数计算累积能量图,`find_optimal_seam`函数计算最小能量seam,`reduce_width`函数用于在图像中删除seam。请注意,这里只进行了水平缩小操作,如果需要进行垂直缩小操作,只需要将`seamDirection`参数设置为`'HORIZONTAL'`即可。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值