最长回文子串-双下标动态规划

题目来源:Leetcode 5.最长回文子串
在这里插入图片描述

DP定义:

容易想到,用一个二维数字dp[i][j]来表示s[i:j]是否是回文串,如s=“daba”。dp[1][3]=1表示"aba"为回文串;

递归条件

想要判断字符串"aba"是否为回文串,只要判断字符串首和尾字符串相同"a"==“a”,并且中间的字符串"b"为回文串即可。

//如果坐标i和j的字符相同,并且夹在中间的字符串s[i:j]为回文串
if(s.charAt(i)==s.charAt(j)  && dp[i-1][j-1]=1){
		dp[i][j]=1;
}

代码

这里有一点需要注意,平常的双层递归都是用i,j作为左右边界遍历即可,如:

for(int i=0;i<len;i++){
    for(int j=i+1;j<len;j++){
		// i是字符串左边界,j是右边界
	}
}

但是这里不能这样遍历。考虑字符串"aaa",依次遍历过程:dp[0][1]=1…dp[0][2]=1 dp[0][3]=0 不正确
因为dp[0][3]是需要依据dp[1][2]的值的,然而dp[1][2]还没有比较。可以发现,较长的字符串会依赖较短的字符串,所以这里应该去枚举子串的长度,再去遍历左边界。

 public String longestPalindrome(String s) {
        int resLen = -1;
        String res=s.substring(0,1);//默认答案为串的第一个字符,因为一个字符一定是回文串
        //判断串的长度为1/2的特殊情况 
        if(s.length()<=1) return s;
        if(s.length()==2){
            return s.charAt(0)==s.charAt(1)?s:s.substring(0,1);
        }
        int[][] dp =new int[s.length()+1][s.length()+1];
        for(int i=1;i<=s.length();i++) dp[i][i]=1; //dp[i:i]都是回文串
        //按照子串长度来遍历,如果不按照长度遍历会出现 "aaaa"判断dp[0:4]时dp[1:3]还没有初始化
        for(int len=2;len<=s.length();len++){
            //枚举左节点
            for(int i=0;i<s.length()-1;i++){
                if(i+len-1 >=s.length()){
                    //越界
                    break;
                }
                //判断s[i: i+len-1]是否是回文串
                int j = i+len-1;//右端点
                //两端相同,则去判断中间的串是否是回文串。
                if(s.charAt(i)==s.charAt(j)){
                    //串长度为2 或 3(一定是回文串) ,或者 dp[i+1][j-1]==1
                    if(j==i+1||j==i+2||dp[i+1][j-1]==1){
                        dp[i][j]=1;
                        //如果长度比之前的最大长度更长,则更新
                        if(j-i+1 >resLen){
                            resLen = j-i+1;
                            res=s.substring(i,j+1);
                        }
                    }
                }
            }
        }

        return res;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值