Tushare的使用感受

Tushare的使用感受

关于金融量化数据的获取

自己最近一段时间在研究量化交易,可是量化交易最重要的是如何获取数据是个头疼的问题。自己也是在网上搜了很多相关的资料进行了解:

  • 聚宽量化
    数据比较的全,支持每分钟的获取数据,但是缺点就是收费,费用还挺高的,基本上一年需要6k的价格才能获取a股的所有股票信息。
  • 腾讯财经
    我看到很多的csdn的博客写了如何用python进行爬取数据从而获得数据。虽然有一些代码,但是实际上你把代码跑到本地你就会发现,根本无法跑通,估计是腾讯自己写了个反爬虫程序吧。同时第二个缺点是:这些数据需要存储在自己的本地,来回爬取数据,然后写入数据,这两个操作还是挺费时间的
  • Tushare
    Tushare是个宝藏的网站,当时也是刷知乎无意见看到的,看到很多人对他一致的好评。价格可以说是完全面费,数据支持每分钟的频率进行获取。后面会详细介绍这个网址

关于Tushare

初识Tushare

这个网址是刷知乎的时候发现的,所有人对他一致好评,所以好奇心驱使我百度搜索了这个网址。数据内容十分的丰富:沪深股票、指数、公募基金、期货、现货、美股、港股等等数据,真的是十分丰富。
在这里插入图片描述

如何使用这个平台

这个平台采用的是积分制的方式来获取数据,对应规则如下:
在这里插入图片描述
总体来说,注册的新人就能获取120。所以也算是能免费使用,毕竟作为一个新人,每天获取数据的频率没必要那么的高,可以每天适当的获取一部分数据放入到本地进行缓存,然后每天按照10分钟一个频率来获取数据也是够用的。所以对新人来说非常友好,可以尝试一定的时间去玩玩这个系统,如果好用的话可以尝试开通高级服务。并且如果你现在还是大学生的话,可以直接联系站长,他会给你免费给你充值2000积分,直接起飞,可以肆无忌惮的玩弄一下这个系统。
另一点要说明的是,这个系统的积分是捐赠的方式来获得的,比例是1:10.比如说,我捐赠200元,那么就能得到2000积分。说实话,对于各大量化数据平台来说,真的是非常的值。200元就能使用别人6000元能体验的效果,真的特别的赚。
如果自己用这个系统用的挺爽的话,到时候适当捐赠一下站长。不过要说明的是,这个积分只有一年有效期。其实算下来也不贵,真的是我找的最良心的网址了,毕竟站长他自己也得花费一定的金额去搭建服务器呢。希望这个良心网站能一直保持下去。

### 使用 Python 和 Jupyter Notebook 分析茅台股票 #### 数据获取与初步处理 为了进行茅台股票的数据分析,在Jupyter Notebook环境中,可以利用`pandas`库读取本地CSV文件或者借助`tushare`库从网络获取最新的历史行情数据。对于已经下载好的茅台股票CSV文件,可以直接采用如下方式加载: ```python import pandas as pd data = pd.read_csv('maotai_stock.csv', index_col='date') print(data.head()) ``` 如果希望实时更新数据,则可以通过Tushare API接口调用相应函数来抓取最新数据并保存至本地[^2]。 #### 数据清洗与探索性分析 一旦拥有了所需的时间序列数据之后,下一步就是对其进行必要的清理工作,比如去除缺失值、重复记录等异常情况;同时也可以计算一些描述统计量帮助理解整体趋势。此外,绘制简单的图表有助于直观感受股价波动规律: ```python import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) plt.plot(data['close']) plt.title('Maotai Stock Price Over Time') plt.xlabel('Date') plt.ylabel('Price (CNY)') plt.show() ``` #### 构建预测模型 当完成前期准备工作后,可以根据业务需求选择合适的机器学习方法建立预测模型。例如,在参考资料中有提到过使用LSTM神经网络结构来进行时间序列预测的例子[^1]。这里同样可以选择其他类型的监督学习算法如逻辑回归或K近邻(KNN),具体取决于实际应用场景以及所关心的目标变量特性[^4]。 #### 模型评估 无论选择了哪种建模策略,最终都需要对得到的结果进行全面检验以确保其有效性。这通常涉及到性能度量指标的选择(如准确率)、交叉验证技巧的应用等方面的工作。另外,还可以进一步深入探讨错误分布模式背后的原因所在,从而不断优化现有方案直至满足预期标准为止[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值