用Java实现杨辉三角

本文介绍了杨辉三角的背景、性质,并通过Java编写代码实现杨辉三角的生成,展示了一系列与杨辉三角相关的数学规律,如组合数、斐波那契数列等。
摘要由CSDN通过智能技术生成

杨辉三角:是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。在欧洲,帕斯卡(1623----1662)在1654年发现这一规律,所以这个表又叫做帕斯卡三角形。帕斯卡的发现比杨辉要迟393年,比贾宪迟600年。

概述,
前提:每行端点与结尾的数为1.(这里第一行定义为n=1)
**1,**每个数等于它上方两数之和。
**2,**每行数字左右对称,由1开始逐渐变大。
**3,**第n行的数字有n项,
**4,**前n行共[(1+n)n]/2 个数。
**5,**第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
**6,**第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
**7,**每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
8,(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
**9,**将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
**10,**将第n行的数字分别乘以10(m-1),其中m为该数所在的列,再将各项相加的和为11(n-1)。110=1,111=1x100+1×101=11,112=1×100+2x101+1x102=121,113=1x100+3×101+3x102+1x103=1331,114=1x100+4x101+6x102+4x103+1x104=14641,115=1x100+5x101+10x102+10x103+5x104+1×105=161051。
**11,**第n行数字的和为2(n-1)。1=2(1-1),1+1=2(2-1),1+2+1=2(3-1),1+3+3+1=2(4-1),1+4+6+4+1=2(5-1),1+5+10+10+5+1=2^(6-1)。
**12,**斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值