【5W2H 分析法本土化】
5w2H 分析法是以五个 w 开头的英语单词和两个 H 开头的英语单词进行 提问,从回答中发现解决问题的线索,即 何因 (Why) ) 、何事(What) 、 何人(Who) 、何时(When) 、何地(Where ) 、如何做(How) 、何价(How much), 这就构成了 5W2H 分析法的总框架。
用国人的白话讲:这件事情(what)发生的时间(when)、地点(where)、参与人(who)和原因(why)。其实就是初中记叙文前面需要交代的背景,故事发生的时间、地点、人物,这些相互之间的关系。
【总结】
了解事情,首先不能带太多的主观想法,站在独立客观的角度,了解清楚的整个事件的全貌,在其中寻找解决方案的可能性,每种可能性都对应一种解决方式,再轻度汇总,权衡利弊,遵循“两害相较取其轻,两利相权取其重”的原则,权衡出合理的解决方案。
【数据挖掘】
数据挖掘侧重解决四类数据分析问题:分类、聚类、关联和预测, 重点在寻找模式和规律。数据分析与数据挖掘的本质是一样的,都是从数据里面 发现关于业务的知识。
【数据的可视化】
遵循:能用图不用表格,能用表格不用文字
【思考】对于数据的展示是这样,目的是让人更容易理解记忆更深刻。最强大脑水哥王昱珩,也是凭借想象成图画记忆。以此类推,视觉、听觉、嗅觉、触觉、身体感官、情绪…参与的人体感官越多,记忆越深刻,越容易记住。
【数据分析师的要求】
【懂业务】:从事数据分析工作的前提就是需要懂业务,即熟悉行业知识、公司 业务及流程,最好有自己独特见解,若脱离行业认知和公司业务背景,分析的结 果只会是脱了线的风筝,没有太大的实用价值。
【懂管理】:一方面是搭建数据分析框架的要求。另一方面的作用是针对数据分 析结论提出有指导意义的分析建议,如果没有管理理论的支撑,就难以确保分析 建议的有效性。
【懂分析】:是指掌握数据分析的基本原理与一些有效的数据分析方法,并能灵 活运用到实践工作中,以便有效地开展数据分析。
【懂工具】 :是指掌握数据分析相关的常用工具。 数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据, 依靠计算器进行分析是不现实的,必须利用强大的数据分析工具完成数据分析工 作。
【懂设计】:是指运用图表有效表达数据分析师的分析观点,使分析结果一目了 然。
【大数据带给我们的三个颠覆性观念转变】
是全部数据,而不是随机采样;
是大体方向,而不是精确制导;
是相关关系,而不是因果关系。
1、不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样 (随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让 我们意识到,这其实是一种人为限制);
2、不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追 求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记 录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对 一个现象刨根问底,只要掌握了大体的发展方向即可,适当忽略微观层面上的精 确度,会让我们在宏观层面拥有更好的洞察力;
3、不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关 系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系, 而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为 何会发生,但是它会提醒我们这件事情正在发生。
【思维变革】
第一个思维变革:利用所有的数据,而不再仅仅依靠部分数据,即不是随机 样本,而是全体数据
第二个思维变革:我们唯有接受不精确性,才有机会打开一扇新的世界之窗, 即不是精确性,而是混杂性。最大的确定性就是不确定性,在不确定性中寻找关联,寻找概率最大的可能性,在不确定性中寻找概率较大的确定性
第三个思维变革:不是所有的事情都必须知道现象背后的原因,而是要让数据自己 “发声”,即不是因果关系,而是相关关系。