python:正向最大匹配法分词(以藏文为例)

​ 前段时间研究了如何用分词工具进行分词,但是分词中涉及的一些算法,不太了解,所以,准备这段时间专攻分词算法原理,大家有补充,或者建议,欢迎留言。

1. 最大匹配法(Maximum Matching)

​ 最大匹配法是指以词典为依据,取词典中最长词长度作为第一次取字数量的长度,在词典中进行扫描。例如:词典中最长词为“中华人民共和国”共7个汉字,则最大匹配起始字数为7个汉字。然后逐字递减,在对应的词典中进行查找。

​ 最大匹配法主要包括正向最大匹配法(FMM,Forward Maximum Matching)、反向最大匹配法(BMM, Backward Maximum Matching)和双向最大匹配法,均是基于词典的。

缺点:

需要给定词典,如果词典中记录不全,比如新词没在字典中,可能就识别不出来;
矛盾之处:词典中的词少的话,会影响准确率,词典中词多的话,会影响运行效率;
优化:

​ 为提升扫描效率,还可以跟据字数多少设计多个字典,然后根据字数分别从不同字典中进行扫描。
1.1 正向最大匹配法
​ 正向即从左往右取词,取词最大长度为词典中长词的长度,每次右边减一个字,直到词典中存在或剩下1个单字。
比如:ཁྱོད་སློབ་མ་སློབ་ཁང་ནང་དུ་སློབ་ཁྲིད་བྱས།

import copy
tibetdict = {'སློབ་མ', 'སློབ་ཁང', 'ནང་དུ', 'སློབ་ཁྲིད'}
s = 'ཁྱོད་སློབ་མ་སློབ་ཁང་ནང་དུ་སློབ་ཁྲིད་བྱས'


# print(s[:len(s)-1])
def TibetSplit(tibet):
    # print(tibet)
    temp = ''
    result = ''
    # return
    while len(tibet) > 0:
        tibet = tibet.strip('་')
        temp = copy.deepcopy(tibet)
        # print(tibet)

        while len(temp) > 0:
            if temp in tibetdict:
                result += temp + '/'
                tibet = tibet[len(temp):]
                # print(tibet,123)
                temp = ''
            else:

                if '་' not in temp:
                    result += temp + '/'
                    tibet = tibet[len(temp):]
                    temp = ''
                else:
                    temp = temp[:len(temp) - 1]
    print(result)
TibetSplit(s)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

network爬虫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值