图像数据增强方式及其实现代码

本文探讨了图像数据增强在机器学习中的应用,包括水平和垂直翻转、旋转、平移、裁剪、对比度与亮度调整以及添加高斯噪声等方法。通过使用opencv和numpy库,详细展示了各种增强技术的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习随笔-记录自己的学习之路

简介:图像数据增强通常有以下几种方式:图像水平翻转、垂直翻转、平移、旋转、亮度调整、加噪声。本文利用opencv和numpy实现了以上数据增强方法,代码如下

  • 水平翻转
def horizon_flip(img):
    '''
    图像水平翻转
    :param img:
    :return:水平翻转后的图像
    '''
    return img[:, ::-1]
  • 垂直翻转
def vertical_flip(img):
    '''
    图像垂直翻转
    :param img:
    :return:
    '''
    return img[::-1]
  • 旋转
    利用cv2.getRotationMatrix2D获取旋转矩阵(坐标变换),和下图所学的旋转坐标变换矩阵不太一样,因为下图的旋转坐标计算公式是按同一坐标点旋转坐标系计算,但是旋转图像最后是要同统一一个图像坐标系,即图像左上角为原点建立坐标系。
    在这里插入图片描述
    在这里插入图片描述
def rotate(img, limit_up=10, limit_down=-10):
    '''
   
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值