LC买卖股票的时机 II

题目要求:

给定一个数组 prices ,其中 prices[i] 表示股票第 i 天的价格。

在每一天,你可能会决定购买和/或出售股票。你在任何时候最多只能持有一股票。你也可以购买它,然后在同一天 出售。返回你能获得的最大利润 。

题目示例:

一行代码:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
       return sum(prices[i+1]-prices[i] for i in range(len(prices)-1) if prices[i+1] > prices[i])

动态规划法:

题目中规定不能够同时参与多笔交易,那么当天交易完成后,手中持有股票只可能是 0 支或者 1 支。

第 1 步:定义状态

  • 令 dp[i][0] 表示第 i 天交易完成手中不持有股票的最大金额数;
  • 令 dp[i][1] 表示第 i 天交易完成后手中持有一支股票的最大金额数。

第 2 步:状态转移方程
dp[i][0] 表示第 i 天交易完成手中不持有股票的最大金额数,出现这样的情况可能是:

  • 第 i−1 天不持有股票,第 i 天无交易;
  • 第 i−1 天持有股票,但是第 i 天将其卖出,获取利润。

那么 dp[i][0] 的转移方程如下:
dp[i][0]=max(dp[i−1][0],dp[i−1][1]+prices[i])
而 dp[i][1] 表示第 i 天交易完成后手中持有一支股票的最大金额数,同样可能出现的情况如下:

  • 第 i−1 天持有股票,第 i 天无交易;
  • 第 i−1 天不持有股票,第 i 天买入。

此时 dp[i][1] 的转移方程如下:
dp[i][1]=max(dp[i−1][1],dp[i−1][0]−prices[i])

第 3 步:确定初始值
起始的时候:

  • 如果什么都不做,dp[0][0] = 0;
  • 如果持有股票,当前拥有的现金数是当天股价的相反数,即 dp[0][1] = -prices[i];

第 4 步:确定输出值
终止的时候,上面也分析了,输出 dp[len - 1][0],因为一定有 dp[len - 1][0] > dp[len - 1][1]。

具体实现代码如下

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if prices==None or len(prices)<2:
            return 0

        n=len(prices)
        dp = [[0]*2 for i in range(n)]
        dp[0][0]=0;dp[0][1]=-prices[0]
        for i in range(1,len(prices)):
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i])
            dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i])

        return dp[n-1][0]

链接:https://leetcode-cn.com/leetbook/read/top-interview-questions-easy/x2zsx1/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值