题目要求:
给定一个数组 prices ,其中 prices[i] 表示股票第 i 天的价格。
在每一天,你可能会决定购买和/或出售股票。你在任何时候最多只能持有一股票。你也可以购买它,然后在同一天 出售。返回你能获得的最大利润 。
题目示例:
一行代码:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
return sum(prices[i+1]-prices[i] for i in range(len(prices)-1) if prices[i+1] > prices[i])
动态规划法:
题目中规定不能够同时参与多笔交易,那么当天交易完成后,手中持有股票只可能是 0 支或者 1 支。
第 1 步:定义状态
- 令 dp[i][0] 表示第 i 天交易完成手中不持有股票的最大金额数;
- 令 dp[i][1] 表示第 i 天交易完成后手中持有一支股票的最大金额数。
第 2 步:状态转移方程
dp[i][0] 表示第 i 天交易完成手中不持有股票的最大金额数,出现这样的情况可能是:
- 第 i−1 天不持有股票,第 i 天无交易;
- 第 i−1 天持有股票,但是第 i 天将其卖出,获取利润。
那么 dp[i][0] 的转移方程如下:
dp[i][0]=max(dp[i−1][0],dp[i−1][1]+prices[i])
而 dp[i][1] 表示第 i 天交易完成后手中持有一支股票的最大金额数,同样可能出现的情况如下:
- 第 i−1 天持有股票,第 i 天无交易;
- 第 i−1 天不持有股票,第 i 天买入。
此时 dp[i][1] 的转移方程如下:
dp[i][1]=max(dp[i−1][1],dp[i−1][0]−prices[i])
第 3 步:确定初始值
起始的时候:
- 如果什么都不做,dp[0][0] = 0;
- 如果持有股票,当前拥有的现金数是当天股价的相反数,即 dp[0][1] = -prices[i];
第 4 步:确定输出值
终止的时候,上面也分析了,输出 dp[len - 1][0],因为一定有 dp[len - 1][0] > dp[len - 1][1]。
具体实现代码如下:
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if prices==None or len(prices)<2:
return 0
n=len(prices)
dp = [[0]*2 for i in range(n)]
dp[0][0]=0;dp[0][1]=-prices[0]
for i in range(1,len(prices)):
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i])
dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i])
return dp[n-1][0]
链接:https://leetcode-cn.com/leetbook/read/top-interview-questions-easy/x2zsx1/