基于生成对抗网络结构的图像修复(GAN)

GAN网络的最初发展史

自2014 年10 月Goodfellow 等人提出了一个通过对抗过程生成模型的框架开始,GAN 网络就成为近年来在无监督学习复杂分布中最具前景的方法之一。而其最初给研究人员的感性认识就是“无中生有”(可以通过噪声生成数据库中不存在的同类型物体) ,具有强大的图像生成能力,因此使用GAN网络进行图像中破损区域的生成也成为研究人员探索的一个方向。

GAN 网络的基本结构

GAN 网络的基本结构如图 8 所示。主要包括一个生成模型G和一个判断模型D 。判断模型D本质上是一个分类器,它判断输入的图像是来自数据集的真实图像,还是网络创建的假图像,其模块单元基本上就是一个表现为CNN 形式的二元分类器。生成模型G 主要是通过反卷积神经网络将随机输入值转化为图像。

采用GAN 网络实现图像的修复,在训练阶段,首先不考虑图像的破损问题,即训练过程中采用未破损的数据进行GAN 网络训练。当完成训练后,意味着生成模型G 具备了由噪声信号z (分布为 Pz )按照分布为 Pdata 的样本生成新图像的能力。则对于一个破损的图像I的修复就可以变换为通过生成模型G 生成一个与图像I 已知部分足够相似的新样本的过程,为了达到这个目的,需要对新生成的图像进行迭代修改,修改的依据即破损的图像 I 的已知部分与生成模型生成的新样本的对应部分要尽可能相似。图9 给出了基于GAN 的图像修复过程框架。 

 

如图9 中,通过噪声信号z 生成新的样本,对新的样本通过两个损失进行迭代处理,具体包括通过判断模型D 计算先验损失以避免生成不合理的图像,通过计算生成样本与待修复图像的已知区域的差异计算内容损失以期生成的样本与待修复的图像足够相似。具体通过生成的图G(z)与待修复图I 中对应已知位置像素值的差作为惩罚项得到内容损失。

 

式中,M 为修复掩码,⊙ 为逐点相乘,式(5)采用了1 范数度量差异,采用不同的距离度量方式都是可取的。这样通过对 G(z)增加类似式(5)的惩罚项即可以迭代地修复图像。采用类似的方法,可以针对人眼实现修复。图10 给出了迭代1000次修复结果的示意图。图11 给出一组基于 GAN 的图像修复方法迭代求解的过程示意图。

 

GAN网络训练的惩罚项

在基于GAN 结构的图像修复方法的训练阶段,除了基于像素值的惩罚项外,可以使用已经预训练好的分类网络的分类错误作为惩罚项,对修复区域、整幅修复后的图像进行分类辨别实现网络的训练,采用这类全局语义损失函数的方式可以有效地促进图像的修复细节。也可以采用图像的结构熵作为损失函数的内容进行网络的训练,结果表明这类方法可以保证修复结果图像的结构连贯性。同样也可以在基于 GAN 修复网络中增加修复对象的语义条件(比如人脸结构) 指导修复生成过程,使得修复结果的整体语义更为合理

 

GAN网络训练的缺点

采用 GAN 网络的图像修复在低分辨率图像, 特别是特定类型的图像修复中可以取得好的效果,但对于高分辨率的图像修复, GAN 的训练非常困难, 特别是对于图像中内容不相似的情况则更加难以收敛。

基于GAN的图像修复方法实验分析

GAN 作为一种具有自监督学习能力的生成网络, 可以针对某一特定类型图像的对抗训练使得生成模型G具有生成该类型图像的能力,最成功的应用即生成逼真的人脸图像。基于DCGAN 网络在 CelebA 数据集上训练人脸生成模型,CelebA 数据集包括了202599 幅人脸图像, 通过训练后的生成模型 G 可以通过100维的向量生成一幅 64 × 64 × 3 像素的彩色人脸图像。进一步采用上面叙述的方法,对随机选取的 64幅测试样本人脸图像进行修复,部分结果如图16 所示,图 16(a)是样本图像,图16(b)是增加掩码的待修复图像,图16(c) 是迭代 1000 次生成的与待修复图像最相似的人脸图像,图 16( d) 是修复结果图像。可见,通过 GAN 网络确实可以生成与待修复样本图像非常相似的新图像,但修复结果有时会不理想,如图16(d)中的第 4 行图像所示。

参考文献:强振平 et al_2019_深度学习图像修复方法综述

### 如何使用StyleGAN进行图像修复 #### 背景介绍 StyleGAN及其后续版本StyleGAN2显著提升了生成对抗网络(GAN)在高分辨率图像合成方面的能力。特别是StyleGAN2不仅解决了前代存在的斑点状伪影问题,还通过引入额外正则化实现了更平滑的插值效果[^2]。 #### 图像修复的技术原理 为了利用StyleGAN进行图像修复,通常涉及以下几个关键技术环节: 1. **预处理阶段** 需要准备待修复的目标图像以及相应的掩码(mask),该掩码用于标记损坏区域的位置。对于输入图像中的缺失部分,在送入模型之前应先填充合理的初始猜测值(如均值、中位数或其他预测算法的结果),以便让StyleGAN更好地理解上下文信息并据此重建丢失的内容。 2. **优化过程** 基于给定的损坏图像和其对应的二进制掩码作为条件变量,定义损失函数来指导潜在空间向量z的学习方向。具体来说,可以通过最小化重构误差(即原图与由当前潜码解码得到的新图片间的差异)加上一些辅助性的约束项来进行迭代调整直至收敛。值得注意的是,这里所说的“重构”并非指完全复制原有像素值,而是要在保持整体风格一致的前提下合理填补空白处的信息。 3. **后处理操作** 完成上述步骤之后所获得的新图像往往还需要经过一定的修饰才能达到理想的效果。这可能涉及到色彩平衡微调、对比度增强等一系列常规手段的应用;另外也可以考虑采用尺度融合策略——即将不同层次特征相结合以提升最终输出品质。 ```python import torch from torchvision import transforms from PIL import Image from stylegan2.model import Generator # Assuming this is a custom or third-party implementation of StyleGAN2 generator def load_image(path, size=256): img = Image.open(path).convert('RGB') transform = transforms.Compose([ transforms.Resize((size, size)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) ]) return transform(img)[None] def repair_image(generator, damaged_img_path, mask_path, output_path='output.png'): device = 'cuda' if torch.cuda.is_available() else 'cpu' G_ema = Generator(size=256, style_dim=512, n_mlp=8).to(device) checkpoint = torch.load('checkpoint/stylegan2-car-config-f.pt') # Load pretrained model weights G_ema.load_state_dict(checkpoint['g_ema']) with torch.no_grad(): damaged_tensor = load_image(damaged_img_path).to(device) mask_tensor = load_image(mask_path, size=damaged_tensor.shape[-1]).to(device) latent_in = torch.randn(1, 512).to(device) for i in range(iterations): # Define number of iterations as needed generated_images, _ = G_ema(latent_in) loss = ((generated_images * (1-mask_tensor)) - (damaged_tensor * (1-mask_tensor))).mean() optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() final_output = generated_images.clamp(-1, 1) result = transforms.functional.to_pil_image(final_output[0].add(1).div_(2)) result.save(output_path) repair_image(None, './input/damaged_car.jpg', './input/mask.png') ``` 此代码片段展示了如何加载预训练好的StyleGAN2模型,并基于指定的损坏图像路径(`damaged_img_path`)及遮罩文件位置(`mask_path`)执行简单的修复流程。请注意实际部署时还需根据具体情况适当修改参数设置和其他配置选项。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值