KMeans算法代码及注释
import numpy as np #科学计算
import matplotlib.pyplot as plt #画图
from sklearn.cluster import KMeans #KMeans算法
# 显示中文、负号
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 读取数据
x = np.loadtxt(r'test.txt')
# 特征缩放
x -= np.mean(x,0)
x /= np.std(x,0,ddof=1)
# 洗牌
np.random.seed(7)
x = np.random.permutation(x)
#肘部法则选取K值
k = np.arange(1,11)
jarr = []
for i in k:
modle = KMeans(n_clusters=i)
modle.fit(x) # 训练模型
jarr.append(modle.inertia_) #将代价存储到列表
plt.annotate(str(i),(i,modle.inertia_))#注释 第1个参数:加的注释的内容,第2个参数:加注释的位置的坐标
#画肘部法则曲线
plt.title('肘部曲线')
plt.plot(k,jarr)
plt.scatter(k,jarr,c='r') #画出点的颜色
plt.show()
#通过肘部法则选取 K=4
#重新创建模型
k = 4
modle1 = KMeans(n_clusters=k)
#训练模型
modle1.fit(x)
#计算聚类并预测每个样本的中心
ci = modle1.predict(x)
# 聚类中心坐标
muk = modle1.cluster_centers_
# #画图
plt.title('聚类归属散点图')
#样本散点分布图
plt.scatter(x[:,0],x[:,1],c=ci)
#画聚类中心
plt.scatter(muk[:,0],muk[:,1],marker='^',cmap=plt.cm.Paired,s=50)
for i in range(k):
plt.annotate('中心'+str(i+1),(muk[i,0],muk[i,1]),size=20) #注释
plt.show()
效果展示
所用到数据集如下:
1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539
-5.379713 -3.362104
0.972564 2.924086
-3.567919 1.531611
0.450614 -3.302219
-3.487105 -1.724432
2.668759 1.594842
-3.156485 3.191137
3.165506 -3.999838
-2.786837 -3.099354
4.208187 2.984927
-2.123337 2.943366
0.704199 -0.479481
-0.392370 -3.963704
2.831667 1.574018
-0.790153 3.343144
2.943496 -3.357075
-3.195883 -2.283926
2.336445 2.875106
-1.786345 2.554248
2.190101 -1.906020
-3.403367 -2.778288
1.778124 3.880832
-1.688346 2.230267
2.592976 -2.054368
-4.007257 -3.207066
2.257734 3.387564
-2.679011 0.785119
0.939512 -4.023563
-3.674424 -2.261084
2.046259 2.735279
-3.189470 1.780269
4.372646 -0.822248
-2.579316 -3.497576
1.889034 5.190400
-0.798747 2.185588
2.836520 -2.658556
-3.837877 -3.253815
2.096701 3.886007
-2.709034 2.923887
3.367037 -3.184789
-2.121479 -4.232586
2.329546 3.179764
-3.284816 3.273099
3.091414 -3.815232
-3.762093 -2.432191
3.542056 2.778832
-1.736822 4.241041
2.127073 -2.983680
-4.323818 -3.938116
3.792121 5.135768
-4.786473 3.358547
2.624081 -3.260715
-4.009299 -2.978115
2.493525 1.963710
-2.513661 2.642162
1.864375 -3.176309
-3.171184 -3.572452
2.894220 2.489128
-2.562539 2.884438
3.491078 -3.947487
-2.565729 -2.012114
3.332948 3.983102
-1.616805 3.573188
2.280615 -2.559444
-2.651229 -3.103198
2.321395 3.154987
-1.685703 2.939697
3.031012 -3.620252
-4.599622 -2.185829
4.196223 1.126677
-2.133863 3.093686
4.668892 -2.562705
-2.793241 -2.149706
2.884105 3.043438
-2.967647 2.848696
4.479332 -1.764772
-4.905566 -2.911070
详细用法(聚类算法python库实现:)
estimator = KMeans(n_clusters=4)
主要参数:
n_clusters : 聚类中心数目, 缺省为8
init : 初始化方法 {‘k-means++’, ‘random‘, ndarray}, 缺省’k-means++’ (智能选择聚类中心)
n_init : k-means算法在以不同的聚类中心组合运行的次数,缺省10
max_iter : k-means算法每次运行时,最大迭代次数,缺省300
tol : 容忍度, 可选, 缺省le-4, 达到此值即停止
precompute_distances : 提前计算距离{‘auto’, True, False} ‘auto’: 若n_samples * n_clusters > 12 million 不进行
random_state: 缺省None; 若int, 随机数产生器seed, 若RandomStates实例, 随机数产生器, 若None, np.random
调用库函数计算:建立模型并计算
estimate.fit(X) # 调用库函数计算k-means算法
estimate.predict(X) #预测数据集X中每个样本所属的聚类中心索引
estimate.fit_predict(X) #计算聚类并预测每个样本的中心:[索引1, 索引2…]
estimate.transform(X) #将样本数据集X转换到(聚类-距离)空间shape(m,k)
estimate.fit_transform(X) # 计算聚类并将X转换到(聚类-距离)空间: shape(m,k)
estimate.cluster_centers_ #聚类中心坐标: shape(k, n_features)
estimate.labels_ #每个样本的所属中心标签索引,同predict(X),shape(m,)
estimate.inertia_ # 所有样本与其最近中心距离的平方和
estimate.score(X) # k-mean算法目标值的相反值, 即inertia_相反值