频率域滤波

二维连续傅里叶变换

  • 傅里叶变换:
    F ( u , v ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) e − j 2 π ( u x + v y )   d x   d y F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)} \,dx\,dy F(u,v)=f(x,y)ej2π(ux+vy)dxdy

  • 反傅里叶变换:
    f ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ F ( u , v ) e j 2 π ( u x + v y )   d u   d v f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)} \,du\,dv f(x,y)=F(u,v)ej2π(ux+vy)dudv

  • 二维冲激串:
    s Δ T Δ Z ( x , y ) = ∑ m = − ∞ ∞ ∑ n = − ∞ ∞ δ ( x − m Δ T ,   y − n Δ Z ) s_{\Delta T \Delta Z}(x,y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x-m\Delta T,\, y-n\Delta Z) sΔTΔZ(x,y)=m=n=δ(xmΔT,ynΔZ)

  • 二维取样定理:对于连续带限函数 f ( x , y ) f(x,y) f(x,y),当采样率 1 Δ T > 2 u m a x \dfrac{1}{\Delta T} > 2u_{max} ΔT1>2umax 1 Δ K > 2 v m a x \dfrac{1}{\Delta K} > 2v_{max} ΔK1>2vmax,可以从 F ˉ ( u , v ) = F ( u , v ) ∗ S ( u , v ) \bar F(u,v) = F(u,v)*S(u,v) Fˉ(u,v)=F(u,v)S(u,v)中无误的恢复 F ( u , v ) F(u,v) F(u,v)

二维离散傅里叶变换

  • DFT
    F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − 2 π j u x M + − 2 π j v y N F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{\frac{-2\pi j ux}{M} + \frac{-2\pi j vy}{N}} F(u,v)=x=0M1y=0N1f(x,y)eM2πjux+N2πjvy

  • IDFT
    f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e 2 π j u x M + 2 π j v y N f(x,y) = \dfrac{1}{MN}\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{\frac{2\pi j ux}{M} + \frac{2\pi j vy}{N}} f(x,y)=MN1u=0M1v=0N1F(u,v)eM2πjux+N2πjvy

  • 对于复数 e θ j e^{\theta j} eθj,其共轭是 e − θ j e^{-\theta j} eθj

  • DFT计算IDFT M N f ∗ ( x , y ) = ∑ y = 0 N − 1 F ∗ ( x , y ) e − 2 π j u x M + − 2 π j v y N MNf^*(x,y) = \sum_{y=0}^{N-1} F^*(x,y) e^{\frac{-2\pi j ux}{M} + \frac{-2\pi j vy}{N}} MNf(x,y)=y=0N1F(x,y)eM2πjux+N2πjvy

性质

  • 图像平移
    f ( x , y ) ⋅ e − 2 π j u 0 x M + − 2 π j v 0 y N    ⟺    F ( u − u 0 , v − v 0 ) f(x,y) \cdot e^{\frac{-2\pi j u_0 x}{M} + \frac{-2\pi j v_0 y}{N}} \iff F(u-u_0,v-v_0) f(x,y)eM2πju0x+N2πjv0yF(uu0,vv0)

    f ( x − x 0 , y − y 0 )    ⟺    F ( u , v ) ⋅ e − 2 π j u x 0 M + − 2 π j v y 0 N f(x-x_0,y-y_0) \iff F(u,v) \cdot e^{\frac{-2\pi j u x_0}{M} + \frac{-2\pi j v y_0}{N}} f(xx0,yy0)F(u,v)eM2πjux0+N2πjvy0

    也就是说,可以 f ( x , y ) ⋅ ( − 1 ) x y f(x,y) \cdot (-1)^{xy} f(x,y)(1)xy,将 F ( u , v ) F(u,v) F(u,v)的原点移动到图像中心 (中心化)。

  • 图像旋转
    x = r cos ⁡ θ ,   y = r sin ⁡ θ ,   u = w cos ⁡ ϕ ,   v = w sin ⁡ ϕ x=r\cos{\theta},\, y=r\sin{\theta},\, u=w\cos{\phi},\, v=w\sin{\phi} x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ

    f ( r , θ − θ 0 )    ⟺    F ( w , ϕ − ϕ 0 ) ,   θ 0 = ϕ 0 f(r,\theta-\theta_0) \iff F(w,\phi-\phi_0),\,\theta_0 = \phi_0 f(r,θθ0)F(w,ϕϕ0),θ0=ϕ0

  • 周期性
    f ( x , y ) = f ( x + k 1 M , y + k 2 N ) F ( u , v ) = F ( u + k 1 M , v + k 2 N ) \begin{aligned} f(x,y) = f(x+k_1M,y+k_2N)\\ F(u,v) = F(u+k_1M,v+k_2N)\\ \end{aligned} f(x,y)=f(x+k1M,y+k2N)F(u,v)=F(u+k1M,v+k2N)

  • 对称性

    • 根据函数分析,任意复变函数可以表示为一个奇数函数 (odd) 和一个偶数函数 (even) 的加和:

    w ( x , y ) = w e ( x , y ) + w o ( x , y ) w(x,y)=w_e(x,y) + w_o(x,y) w(x,y)=we(x,y)+wo(x,y)

    ​ 其中,定义:
    w e ( x , y ) : = w ( x , y ) + w ( − x , − y ) 2 w o ( x , y ) : = w ( x , y ) − w ( − x , − y ) 2 \begin{aligned} w_e(x,y) := \dfrac{w(x,y)+w(-x,-y)}{2}\\ w_o(x,y) := \dfrac{w(x,y)-w(-x,-y)}{2}\\ \end{aligned} we(x,y):=2w(x,y)+w(x,y)wo(x,y):=2w(x,y)w(x,y)
    ​ 并且, w e ( x , y ) = w e ( − x , − y ) ,   w o ( x , y ) = − w o ( − x , − y ) w_e(x,y) = w_e(-x,-y),\,w_o(x,y) = -w_o(-x,-y) we(x,y)=we(x,y),wo(x,y)=wo(x,y),偶函数是对称的 (偶对称的),奇函数是反对称的 (奇对称的)。

    • F ( u , v ) = R ( u , v ) + j ⋅ I ( u , v ) F(u,v)=R(u,v)+j \cdot I(u,v) F(u,v)=R(u,v)+jI(u,v),其中 R , I R,I R,I都是实函数;共轭为 F ∗ ( u , v ) = R ( u , v ) − j ⋅ I ( u , v ) F^*(u,v) = R(u,v)-j \cdot I(u,v) F(u,v)=R(u,v)jI(u,v)

    f ( x , y ) 实 函 数    ⟺    F ∗ ( u , v ) = F ( − u , − v ) ; 共 轭 对 称 f ( x , y ) 虚 函 数    ⟺    F ∗ ( u , v ) = − F ( − u , − v ) ; 共 轭 反 对 称 f ( x , y ) 实 函 数    ⟺    R ( u , v ) 偶 函 数 , I ( u , v ) 奇 函 数 f ( x , y ) 虚 函 数    ⟺    R ( u , v ) 奇 函 数 , I ( u , v ) 偶 函 数 f ( x , y ) 奇 的 复 函 数    ⟺    F ( u , v ) 奇 的 复 函 数 f ( x , y ) 偶 的 复 函 数    ⟺    F ( u , v ) 偶 的 复 函 数 f ( x , y ) 奇 的 虚 函 数    ⟺    F ( u , v ) 奇 的 实 函 数 ; 虚 变 实 f ( x , y ) 偶 的 虚 函 数    ⟺    F ( u , v ) 偶 的 虚 函 数 ; 不 变 f ( x , y ) 奇 的 实 函 数    ⟺    F ( u , v ) 奇 的 虚 函 数 ; 实 变 虚 f ( x , y ) 偶 的 实 函 数    ⟺    F ( u , v ) 偶 的 实 函 数 ; 不 变 \begin{aligned} f(x,y)实函数 \iff F^*(u,v) = F(-u,-v);共轭对称\\ f(x,y)虚函数 \iff F^*(u,v) = -F(-u,-v);共轭反对称\\ f(x,y)实函数 \iff R(u,v)偶函数,I(u,v)奇函数\\ f(x,y)虚函数 \iff R(u,v)奇函数,I(u,v)偶函数\\ f(x,y)奇的复函数 \iff F(u,v)奇的复函数\\ f(x,y)偶的复函数 \iff F(u,v)偶的复函数\\ f(x,y)奇的虚函数 \iff F(u,v)奇的实函数;虚变实\\ f(x,y)偶的虚函数 \iff F(u,v)偶的虚函数;不变\\ f(x,y)奇的实函数 \iff F(u,v)奇的虚函数;实变虚\\ f(x,y)偶的实函数 \iff F(u,v)偶的实函数;不变\\ \end{aligned} f(x,y)F(u,v)=F(u,v)f(x,y)F(u,v)=F(u,v)f(x,y)R(u,v)I(u,v)f(x,y)R(u,v)I(u,v)f(x,y)F(u,v)f(x,y)F(u,v)f(x,y)F(u,v)f(x,y)F(u,v)f(x,y)F(u,v)f(x,y)F(u,v)

    • 第一条性质最常用:实函数的傅里叶变换是共轭对称的

常见傅里叶变换对

  • 离散单位冲击: δ ( x , y )    ⟺    1 ,   1    ⟺    M N ⋅ δ ( u , v ) \delta(x,y) \iff 1,\,1 \iff MN \cdot \delta(u,v) δ(x,y)1,1MNδ(u,v)

  • 矩形函数:
    r e c t [ a , b ]    ⟺    a b ⋅ s i n ( u a π ) u a π ⋅ s i n ( v b π ) v b π ⋅ e − j π ( u a + v b ) rect[a,b] \iff ab \cdot \dfrac{sin(ua\pi)}{ua\pi} \cdot \dfrac{sin(vb\pi)}{vb\pi} \cdot e^{-j\pi(ua+vb)} rect[a,b]abuaπsin(uaπ)vbπsin(vbπ)ejπ(ua+vb)
    定义归一化的 s i n c sinc sinc函数: s i n c ( x ) : = sin ⁡ ( π x ) π x sinc(x) := \dfrac{\sin(\pi x)}{\pi x} sinc(x):=πxsin(πx)

  • 三角函数:
    s i n ( 2 π u 0 x / M + 2 π v 0 y / N )    ⟺    j M N 2 [ δ ( u + u 0 , v + v 0 ) − δ ( u − u 0 , v − v 0 ) ] sin(2\pi u_0 x/M + 2\pi v_0 y/N) \iff \dfrac{jMN}{2}[\delta(u+u_0,v+v_0) - \delta(u-u_0,v-v_0)] sin(2πu0x/M+2πv0y/N)2jMN[δ(u+u0,v+v0)δ(uu0,vv0)]

    c o s ( 2 π u 0 x / M + 2 π v 0 y / N )    ⟺    M N 2 [ δ ( u + u 0 , v + v 0 ) + δ ( u − u 0 , v − v 0 ) ] cos(2\pi u_0 x/M + 2\pi v_0 y/N) \iff \dfrac{MN}{2}[\delta(u+u_0,v+v_0) + \delta(u-u_0,v-v_0)] cos(2πu0x/M+2πv0y/N)2MN[δ(u+u0,v+v0)+δ(uu0,vv0)]

  • 偏导数:
    ( ∂ ∂ x ) m ( ∂ ∂ y ) n f ( x , y )    ⟺    ( j 2 π u ) m ( j 2 π v ) n F ( u , v ) (\frac{\partial}{\partial x})^m (\frac{\partial}{\partial y})^n f(x,y) \iff (j2\pi u)^m (j2\pi v)^n F(u,v) (x)m(y)nf(x,y)(j2πu)m(j2πv)nF(u,v)

  • 高斯函数:
    A e − 2 π 2 σ 2 ( x 2 + y 2 )    ⟺    A 2 π σ 2 e − ( u 2 + v 2 ) / 2 σ 2 A e^{-2\pi^2 \sigma^2(x^2+y^2)} \iff \dfrac{A}{2\pi \sigma^2} e^{-(u^2+v^2) / 2 \sigma^2} Ae2π2σ2(x2+y2)2πσ2Ae(u2+v2)/2σ2

频谱、相角

  • 二维DFT是复函数,可以用极坐标表示: F ( u , v ) = ∣ F ( u , v ) ∣ ⋅ e j ϕ ( u , v ) F(u,v)=|F(u,v)|\cdot e^{j \phi(u,v)} F(u,v)=F(u,v)ejϕ(u,v)

  • 频谱 ∣ F ( u , v ) ∣ = R 2 ( u , v ) + I 2 ( u , v ) |F(u,v)| = \sqrt{R^2(u,v)+I^2(u,v)} F(u,v)=R2(u,v)+I2(u,v)

  • 相角 ϕ ( u , v ) = arctan ⁡ I ( u , v ) R ( u , v ) \phi(u,v)=\arctan \dfrac{I(u,v)}{R(u,v)} ϕ(u,v)=arctanR(u,v)I(u,v)

  • 功率谱 ∣ F ( u , v ) ∣ 2 = R 2 ( u , v ) + I 2 ( u , v ) |F(u,v)|^2 = R^2(u,v)+I^2(u,v) F(u,v)2=R2(u,v)+I2(u,v)

  • 由于实函数 f ( x , y ) f(x,y) f(x,y)的傅里叶变换 F ( u , v ) F(u,v) F(u,v)是共轭对称的,于是:

    • 频谱是偶对称的, ∣ F ( u , v ) ∣ = ∣ F ( − u , − v ) ∣ |F(u,v)| = |F(-u,-v)| F(u,v)=F(u,v)
    • 相角是奇对称的, ϕ ( u , v ) = − ϕ ( − u , − v ) \phi(u,v) = -\phi(-u,-v) ϕ(u,v)=ϕ(u,v)
    • F ( 0 , 0 ) = ∣ F ( 0 , 0 ) ∣ = M N ⋅ f ˉ ( x , y ) F(0,0) = |F(0,0)| = MN \cdot \bar f(x,y) F(0,0)=F(0,0)=MNfˉ(x,y),其中 f ˉ ( x , y ) \bar f(x,y) fˉ(x,y)是平均灰度
  • 图像平移
    f ( x − x 0 , y − y 0 )    ⟺    F ( u , v ) ⋅ e − 2 π j ( u x 0 M + v y 0 N ) f(x-x_0,y-y_0) \iff F(u,v) \cdot e^{-2\pi j(\frac{ u x_0}{M} + \frac{v y_0}{N})} f(xx0,yy0)F(u,v)e2πj(Mux0+Nvy0)

    由于:

    e − 2 π j ( u x 0 M + v y 0 M ) = cos ⁡ θ + j sin ⁡ θ ,   θ ( u , v ) = − 2 π ( u x 0 M + v y 0 N ) e^{-2\pi j(\frac{ u x_0}{M} + \frac{v y_0}{M})} = \cos{\theta}+j\sin{\theta},\, \theta(u,v) = -2\pi(\frac{ u x_0}{M} + \frac{v y_0}{N}) e2πj(Mux0+Mvy0)=cosθ+jsinθ,θ(u,v)=2π(Mux0+Nvy0)

    变为极坐标表示: e − 2 π j ( u x 0 M + v y 0 M )    ⟺    ( 1 , θ ) e^{-2\pi j(\frac{ u x_0}{M} + \frac{v y_0}{M})} \iff (1,\theta) e2πj(Mux0+Mvy0)(1,θ)

    两复数相乘,就是相角相加,频谱相乘

    因此,对于图像平移,频谱阵列不改变,但各个相角会各自旋转 (注意不是相角阵列的旋转) 一定角度 (但旋转角度杂乱无章,绘制相角图像很难看出有效信息)

    对于 x 0 = M / 2 ,   y 0 = N / 2 x_0=M/2,\,y_0=N/2 x0=M/2,y0=N/2,那么 θ ( u , v ) ≡ π ( u + v ) m o d    2 π \theta(u,v) \equiv \pi(u+v) \mod{2\pi} θ(u,v)π(u+v)mod2π

    对于 x 0 = 1 ,   y 0 = 1 x_0=1,\,y_0=1 x0=1,y0=1,那么 θ ( u , v ) = − 2 π M ⋅ u + − 2 π N ⋅ v \theta(u,v) = \frac{-2\pi}{M} \cdot u + \frac{-2\pi}{N} \cdot v θ(u,v)=M2πu+N2πv

  • 图像旋转
    f ( r , θ − θ 0 )    ⟺    F ( w , ϕ − ϕ 0 ) ,   θ 0 = ϕ 0 f(r,\theta-\theta_0) \iff F(w,\phi-\phi_0),\,\theta_0 = \phi_0 f(r,θθ0)F(w,ϕϕ0),θ0=ϕ0
    易知,对于图像旋转,频谱阵列会旋转相同角度;相角阵列也会变化,但很难用肉眼看出什么有用信息。

  • 频谱阵列,包含原图像的灰度信息 (替换成不同的频谱,看起来像是加入了噪声)

  • 相角阵列,包含原图像的形状信息 (对于复原图像十分关键)

频率域滤波

  • 给定 M × N M \times N M×N大小的原图像 f ( x , y ) f(x,y) f(x,y),零填充到 ( P = 2 M ) × ( Q = 2 N ) (P=2M) \times (Q=2N) (P=2M)×(Q=2N)大小的 f p f_p fp f f f位于 f p f_p fp的左上象限
  • ( − 1 ) x y (-1)^{xy} (1)xy f p f_p fp做阵列乘,将傅里叶变换的原点移到中心
  • 计算DFT,得到 F ( u , v ) F(u,v) F(u,v);它的中心是低频分量,四周是高频分量
  • 确定一个实的滤波器 H ( u , v ) H(u,v) H(u,v),计算阵列乘 G ( u , v ) = F ( u , v ) H ( u , v ) G(u,v) = F(u,v)H(u,v) G(u,v)=F(u,v)H(u,v)
  • 计算IDFT,保留实数部分 R ( x , y ) R(x,y) R(x,y),得到 g p g_p gp
  • ( − 1 ) x y (-1)^{xy} (1)xy g p g_p gp做阵列乘,逆中心化
  • 截取左上象限,得到处理过的图像 f ′ ( x , y ) f'(x,y) f(x,y)

滤波器

  • 距离: D ( u , v ) = ( u − P / 2 ) 2 + ( v − Q / 2 ) 2 D(u,v) = \sqrt{(u-P/2)^2 + (v-Q/2)^2} D(u,v)=(uP/2)2+(vQ/2)2

  • 理想低通滤波器(ILPF)
    H ( u , v ) = { 1 , D ( u , v ) ≤ D 0 0 , D ( u , v ) > D 0 H(u,v) = \left\{ \begin{aligned} 1,&& D(u,v) \le D_0\\ 0,&& D(u,v) > D_0\\ \end{aligned} \right. H(u,v)={1,0,D(u,v)D0D(u,v)>D0
    由于ILPF在 D 0 D_0 D0处突变,因此它的 h ( x , y ) h(x,y) h(x,y) s i n c sinc sinc的形状,将引起振铃现象。

  • 布特沃斯低通滤波器(BLPF): H ( u , v ) = 1 1 + ( D ( u , v ) / D 0 ) 2 n H(u,v) = \dfrac{1}{1+(D(u,v)/D_0)^{2n}} H(u,v)=1+(D(u,v)/D0)2n1,n阶;截止频率处 D ( u , v ) = D 0 D(u,v)=D_0 D(u,v)=D0 H ( u , v ) = 0.5 H(u,v)=0.5 H(u,v)=0.5。低阶BLPF振铃现象难以察觉,但高阶DLPF会有明显的振铃。

  • 高斯低通滤波器(GLPF): H ( u , v ) = A e − D 2 ( u , v ) 2 σ 2 H(u,v) = A e^{-\frac{D^2(u,v)}{2\sigma^2}} H(u,v)=Ae2σ2D2(u,v);令截止频率 D 0 = σ D_0 = \sigma D0=σ,当 D ( u , v ) = D 0 D(u,v)=D_0 D(u,v)=D0时, H ( u , v ) = 0.607 H(u,v)=0.607 H(u,v)=0.607。GLPF没有振铃。

  • 理想高通滤波器(IHPF)
    H ( u , v ) = { 0 , D ( u , v ) ≤ D 0 1 , D ( u , v ) > D 0 H(u,v) = \left\{ \begin{aligned} 0,&& D(u,v) \le D_0\\ 1,&& D(u,v) > D_0\\ \end{aligned} \right. H(u,v)={0,1,D(u,v)D0D(u,v)>D0

  • 生成对应的高通滤波器: H H P ( u , v ) = 1 − H L P ( u , v ) H_{HP}(u,v) = 1-H_{LP}(u,v) HHP(u,v)=1HLP(u,v)

  • LPF通过低频分量,抑制高频分量,用于平滑图像 (去除噪声,但图像变模糊)

  • HPF通过高频分量,抑制低频分量,用于锐化图像 (注意,直流分量 F ( 0 , 0 ) F(0,0) F(0,0)携带图像平均灰度)

  • 理想带阻滤波器
    H ( u , v ) = { 0 , D 0 − W / 2 ≤ D ( u , v ) ≤ D 0 + W / 2 1 , o t h e r s H(u,v) = \left\{ \begin{aligned} 0,&& D_0-W/2 \le D(u,v) \le D_0+W/2\\ 1,&& others\\ \end{aligned} \right. H(u,v)={0,1,D0W/2D(u,v)D0+W/2others
    用于去除周期噪声(在频率域形成一个圆圈)。

  • 理想带通滤波器
    H ( u , v ) = { 1 , D 0 − W / 2 ≤ D ( u , v ) ≤ D 0 + W / 2 0 , o t h e r s H(u,v) = \left\{ \begin{aligned} 1,&& D_0-W/2 \le D(u,v) \le D_0+W/2\\ 0,&& others\\ \end{aligned} \right. H(u,v)={1,0,D0W/2D(u,v)D0+W/2others

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值