NTT 的各类优化:Harvey、PtNTT,Intel AVX2、ARM Neon、GPGPU

参考文献:

  1. [Har14] Harvey D. Faster arithmetic for number-theoretic transforms[J]. Journal of Symbolic Computation, 2014, 60: 113-119.
  2. [Sei18] Seiler G. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography[J]. Cryptology ePrint Archive, 2018.
  3. [ZXZ+19] Zhou S, Xue H, Zhang D, et al. Preprocess-then-NTT technique and its applications to K yber and N ew H ope[C]//Information Security and Cryptology: 14th International Conference, Inscrypt 2018, Fuzhou, China, December 14-17, 2018, Revised Selected Papers 14. Springer International Publishing, 2019: 117-137.
  4. [ZLP21] Zhu Y, Liu Z, Pan Y. When NTT meets Karatsuba: preprocess-then-NTT technique revisited[C]//International Conference on Information and Communications Security. Cham: Springer International Publishing, 2021: 249-264.
  5. [CHK+21] Chung C M M, Hwang V, Kannwischer M J, et al. NTT multiplication for NTT-unfriendly rings: New speed records for Saber and NTRU on Cortex-M4 and AVX2[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021: 159-188.
  6. [BHK+21] Becker H, Hwang V, Kannwischer M J, et al. Neon ntt: Faster dilithium, kyber, and saber on cortex-a72 and apple m1[J]. Cryptology ePrint Archive, 2021.
  7. [HLS+22] Hwang V, Liu J, Seiler G, et al. Verified NTT multiplications for NISTPQC KEM lattice finalists: Kyber, SABER, and NTRU[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022: 718-750.
  8. [DL22] Duong-Ngoc P, Lee H. Configurable mixed-radix number theoretic transform architecture for lattice-based cryptography[J]. IEEE Access, 2022, 10: 12732-12741.
  9. [ZLH+23] Zhao Y, Liu X, Hu Y, et al. Design of an Efficient NTT/INTT Architecture with Low-Complex Memory Mapping Scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.
  10. [FWX+23] Fan S, Wang Z, Xu W, et al. Tensorfhe: Achieving practical computation on encrypted data using gpgpu[C]//2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2023: 922-934.
  11. 快速乘法技巧:Karatsuba, Toom, Good, Schonhage, Strassen, Nussbaumer
  12. Baby-Step Giant-Step & Homomorphic DFT
  13. ARM NEON技术 - 基础介绍
  14. Tensor Core 和 Cuda Core 的区别
  15. Nvidia Tensor Core-WMMA API 编程入门

软件优化

Harvey Butterfly

在 Shoup’s NTL 中,radix-2 NTT 的蝴蝶实现如下:

在这里插入图片描述

它采用了 Barrett 算法的变体,Shoup’s modular multiplication:修改 W ′ ≈ β / p W' \approx \beta/p Wβ/p W ≈ W β / p W \approx W\beta/p WWβ/p,于是 Barrett 取模算法就额外计算了与常数 W W W 的数乘运算。但是这个蝴蝶的 if-else 语句过多,容易使得 CPU 分支预测失败并导致回滚。

[Har14] 提出使用 Z p \mathbb Z_p Zp冗余表示 [ 0 , 2 p ) [0,2p) [0,2p) [ 0 , 4 p ) [0,4p) [0,4p)),从而移除了一些 if-else 语句。正确性要求:Shoup 模乘算法 W T ( m o d β ) WT\pmod\beta WT(modβ),只要求了 0 ≤ T < β 0 \le T < \beta 0T<β,并不需要 T < p T<p T<p,因此只要维持 4 p < β 4p<\beta 4p<β 结果就是正确的。

GS 蝴蝶的实现:

在这里插入图片描述

CT 蝴蝶的实现:

在这里插入图片描述

另外,也可以使用 Montgomery 模乘(而非 Shoup’s Barrett 模乘)去实现蝴蝶,此时也可以继续采取冗余表示:

在这里插入图片描述

Preprocess-then-NTT

[ZXZ+19] 考虑了 Z q \mathbb Z_q Zq 不存在 ζ 2 n \zeta_{2n} ζ2n 的情况,并非采取 Incomplete NTT,而是先对多项式做一些预处理(其实就是 Nussbaumer 转换)

1-Round Preprocess-then-NTT(1PtNTT),给定 f ∈ Z q [ x ] / ( x n + 1 ) f \in \mathbb Z_q[x]/(x^n+1) fZq[x]/(xn+1),那么
ψ : Z q [ x ] / ( x n + 1 ) → ( Z q [ y ] / ( y n / 2 + 1 ) ) [ x ] / ( x 2 − y ) f e v e n ( x 2 ) + x ⋅ f o d d ( x 2 ) ↦ f e v e n ( y ) + f o d d ( y ) ⋅ x \begin{aligned} \psi: \mathbb Z_q[x]/(x^n+1) &\to (\mathbb Z_q[y]/(y^{n/2}+1))[x]/(x^2-y)\\ f_{even}(x^2)+x\cdot f_{odd}(x^2) &\mapsto f_{even}(y)+f_{odd}(y)\cdot x \end{aligned} ψ:Zq[x]/(xn+1)feven(x2)+xfodd(x2)(Zq[y]/(yn/2+1))[x]/(x2y)feven(y)+fodd(y)x
此时,只需要 n ∣ q − 1 n\mid q-1 nq1(而非 2 n ∣ q − 1 2n\mid q-1 2nq1),那么两个系数 f e v e n , f o d d f_{even}, f_{odd} feven,fodd 就可以完全 NTT,即
1 P t N T T ( f ) : = ( N T T ( f e v e n ) ,    N T T ( f o d d ) ) 1PtNTT(f) := (NTT(f_{even}),\,\, NTT(f_{odd})) 1PtNTT(f):=(NTT(feven),NTT(fodd))
对于多项式乘法,就简单地采取 School 乘法即可。但是为了模 ( x 2 − y ) (x^2-y) (x2y) 方便,[ZXZ+19] 另外计算了 f o d d ′ ( y ) : = y ⋅ f o d d ( y ) f_{odd}'(y):=y \cdot f_{odd}(y) fodd(y):=yfodd(y) 以及它的 NTT 域,那么
h e v e n = f e v e n ⋅ g e v e n + f o d d ⋅ g o d d ′ h o d d = f e v e n ⋅ g o d d + f o d d ⋅ g e v e n \begin{aligned} h_{even} &= f_{even} \cdot g_{even} + f_{odd} \cdot g_{odd}'\\ h_{odd} &= f_{even} \cdot g_{odd} + f_{odd} \cdot g_{even} \end{aligned} hevenhodd=fevengeven+foddgodd=fevengodd+foddgeven
这一共需要计算 f e v e n , f o d d , g e v e n , g o d d , g o d d ′ f_{even},f_{odd},g_{even},g_{odd},g_{odd}' feven,fodd,geven,godd,godd 五个长度为 n / 2 n/2 n/2 的 forward NTT,以及 h e v e n , h o d d h_{even},h_{odd} heven,hodd 两个长度为 n / 2 n/2 n/2 的 inverse NTT。计算复杂度为 7 n / 2 log ⁡ n + 2 n 7n/2\log n+2n 7n/2logn+2n

其实 y ∈ Z p [ y ] / ( y n / 2 + 1 ) y \in \mathbb Z_p[y]/(y^{n/2}+1) yZp[y]/(yn/2+1) 的 NTT 域极其特殊,于是 g o d d ′ g_{odd}' godd 明明可以在 N T T ( g o d d ) NTT(g_{odd}) NTT(godd) 下直接计算出来,这个额外的 forward NTT 是不必要的。2-Round Preprocess-then-NTT(2PtNTT)的计算方法类似,就是采取了 x 4 = y x^4=y x4=y 的变换,此时只要求 n / 2 ∣ q − 1 n/2 \mid q-1 n/2q1 即可。计算复杂度为 15 n / 4 log ⁡ n + 4 n 15n/4\log n+4n 15n/4logn+4n

Improved PtNTT

[ZXZ+19] 实际上是采取了 “跨步” 转换。 [ZLP21] 采取 “聚合” 转换,它称之为 2-Part-Sepration,只需要 n ∣ q − 1 n \mid q-1 nq1(而非 2 n ∣ q − 1 2n\mid q-1 2nq1
ψ : Z q [ x ] / ( x n + 1 ) → Z q [ x ] [ y ] / ( y 2 + 1 ,    y − x n / 2 ) f 0 ( x ) + x n / 2 ⋅ f 1 ( x ) ↦ f 0 ( x ) + f 1 ( x ) ⋅ y \begin{array}{crcl} \psi: &\mathbb Z_q[x]/(x^n+1) &\to& \mathbb Z_q[x][y]/(y^2+1,\,\, y-x^{n/2})\\ &f_0(x)+x^{n/2}\cdot f_1(x) &\mapsto& f_0(x)+f_1(x)\cdot y \end{array} ψ:Zq[x]/(xn+1)f0(x)+xn/2f1(x)Zq[x][y]/(y2+1,yxn/2)f0(x)+f1(x)y

采取 Karatsuba 算法,
f ↦ ( f 0 , f 0 + f 1 ) g ↦ ( g 0 , g 0 + g 1 ) u : = f 1 g 1 h = f 0 g 0 ⋅ ( 1 − y ) + ( f 0 + f 1 ) ( g 0 + g 1 ) ⋅ x + u ⋅ ( y 2 − y ) = ( f 0 g 0 − u ) + ( ( f 0 + f 1 ) ( g 0 + g 1 ) − f 0 g 0 − u ) ⋅ y \begin{aligned} f &\mapsto (f_0, f_0+f_1)\\ g &\mapsto (g_0, g_0+g_1)\\ u &:= f_1g_1\\ h &= f_0g_0 \cdot (1-y) + (f_0+f_1)(g_0+g_1) \cdot x + u \cdot (y^2-y)\\ &= (f_0g_0-u) + ((f_0+f_1)(g_0+g_1)-f_0g_0-u) \cdot y \end{aligned} fguh(f0,f0+f1)(g0,g0+g1):=f1g1=f0g0(1y)+(f0+f1)(g0+g1)x+u(y2y)=(f0g0u)+((f0+f1)(g0+g1)f0g0u)y
上述算法需要计算 f 0 , f 1 , g 0 , g 1 f_0,f_1,g_0,g_1 f0,f1,g0,g1 四个长度为 n / 2 n/2 n/2 的 forward NTT(应当是模 x n / 2 − y x^{n/2}-y xn/2y 的多项式,没法直接 NTT 啊!),以及 f 0 g 0 , f 1 g 1 , ( f 0 + f 1 ) ( g 0 + g 1 ) f_0g_0,f_1g_1,(f_0+f_1)(g_0+g_1) f0g0,f1g1,(f0+f1)(g0+g1) ( ⋯   ) ⋅ y (\cdots)\cdot y ()y 四个 point-wise mult,其中的 N T T ( y ) NTT(y) NTT(y) 就只是常数而已。得到的 h h h 是长度 n / 2 n/2 n/2 的向量(嗯?明显不正常啊),只需一次 inverse NTT 就可以恢复出 h = f g h=fg h=fg

将它更加细分,
ψ : Z q [ x ] / ( x n + 1 ) → Z q [ x ] [ y ] / ( y 2 α + 1 ,    y − x n / 2 α ) \psi: \mathbb Z_q[x]/(x^n+1) \to \mathbb Z_q[x][y]/(y^{2^\alpha}+1,\,\, y-x^{n/2^\alpha})\\ ψ:Zq[x]/(xn+1)Zq[x][y]/(y2α+1,yxn/2α)
此时的 f f f 被转换为 ∑ i f i ( x ) ⋅ y i \sum_i f_i(x) \cdot y^i ifi(x)yi,分成了 2 α 2^\alpha 2α 块。采取类似的乘法技巧,需要 2 α + 1 2^{\alpha+1} 2α+1 次长度为 n / 2 α n/2^\alpha n/2α 的 forward NTT,以及 2 2 α + 2 α + 1 − 4 2^{2\alpha}+2^{\alpha+1}-4 22α+2α+14 次的 point-wise mult,最终得到一个长度为 n / 2 α n/2^\alpha n/2α 的结果(这是什么鬼!),执行一次 inverse NTT。[ZLP21] 说上述算法的复杂度为 5 n log ⁡ n + O ( n ) 5n\log n+O(n) 5nlogn+O(n),而原始 NTT 乘法的复杂度为 3 n log ⁡ n + O ( n ) 3n\log n+O(n) 3nlogn+O(n),因此减速因子是 5 / 3 5/3 5/3

[ZLP21] 另外还对 [ZXZ+19] 进行了优化,也就是不再计算 N T T ( g o d d ′ ) NTT(g_{odd}') NTT(godd),而是使用 N T T ( y ) NTT(y) NTT(y) 计算乘积。多了一次 ponit-wise mult 的开销,但是减少了一次 forward NTT 运算。称其为:1-Round Improved-Preprocess-then-NTT(1IPtNTT),计算复杂度为 6 ⋅ n / 2 log ⁡ ( n / 2 ) + 4 ⋅ n / 2 = 3 n log ⁡ n − n 6\cdot n/2\log(n/2)+4\cdot n/2 = 3n\log n-n 6n/2log(n/2)+4n/2=3nlognn

另外,[ZLP21] 还将它扩展到更加细分, α \alpha α-IPtNTT(其实就是 Nussbaumer 转换),
Z q [ x ] / ( x n + 1 ) ≅ ( Z q [ y ] / ( y n / 2 α + 1 ) ) [ x ] / ( x 2 α − y ) \mathbb Z_q[x]/(x^n+1) \cong (\mathbb Z_q[y]/(y^{n/2^\alpha}+1))[x]/(x^{2^\alpha}-y) Zq[x]/(xn+1)(Zq[y]/(yn/2α+1))[x]/(x2αy)
然后只需 n / 2 α ∣ q − 1 n/2^\alpha \mid q-1 n/2αq1,即可执行长度为 n / 2 α n/2^\alpha n/2α 的完全 NTT,然后 [ZLP21] 采取 School 乘法,计算这个 ( m o d x 2 α − y ) \pmod{x^{2^\alpha}-y} (modx2αy) 的多项式乘法。计算复杂度为 3 n log ⁡ n + ( 3 ⋅ 2 α − 2 − 3 α + 1 / 2 ) ⋅ n 3n\log n + (3 \cdot 2^{\alpha-2}-3\alpha+1/2)\cdot n 3nlogn+(32α23α+1/2)n,如果采取 Karatsuba 算法后面的线性项可以更小一些。

对于 α = 2 , 3 \alpha=2,3 α=2,3,达到最优的复杂度 3 n log ⁡ n − 5 / 2 n 3n\log n-5/2n 3nlogn5/2n,当 n = 1024 n=1024 n=1024 量级,甚至比原始的 NTT 算法的 3 n log ⁡ n + O ( n ) 3n\log n + O(n) 3nlogn+O(n) 还要快不少(比率是 0.887 0.887 0.887)。换句话说,由于多项式的长度变短,蝴蝶层数减少,不完全的 NTT 乘法甚至可能会更快!

NTT-unfriendly rings

[CHK+21] 考虑了 PQC 中 NTT 不友好的 Saber、NTRU、LAC 方案的 NTT 加速实现。

  • Saber 的代数结构 Z q [ x ] / ( x n + 1 ) \mathbb Z_q[x]/(x^n+1) Zq[x]/(xn+1),其中 q = 2 13 q=2^{13} q=213 不是素数,维度 n = 256 n=256 n=256
  • NTRU 的代数结构有三个, Z 3 [ x ] / ( Φ n ( x ) ) \mathbb Z_3[x]/(\Phi_n(x)) Z3[x]/(Φn(x)) Z q [ x ] / ( Φ n ( x ) ) \mathbb Z_q[x]/(\Phi_n(x)) Zq[x]/(Φn(x)) Z q [ x ] / ( Φ 1 ( x ) ⋅ Φ n ( x ) ) \mathbb Z_q[x]/(\Phi_1(x)\cdot\Phi_n(x)) Zq[x]/(Φ1(x)Φn(x)),其中的 n n n 是素数, q = 2 k q=2^k q=2k 不是素数
  • LAC 的代数结构 Z q [ x ] / ( x n + 1 ) \mathbb Z_q[x]/(x^n+1) Zq[x]/(xn+1),其中 q = 251 q=251 q=251 是一种 min-split modulus,它使得 x n + 1 x^n+1 xn+1 仅能分解为两个长度 n / 2 n/2 n/2 的不可约因子

[CHK+21] 考虑的优化技术:Standard CTTwisted GSNegacyclic ConvolutionsIncomplete NTTsGood’s TrickMixed-Radix NTTMultiple Moduli and Explicit CRT

  1. 对 Saber 的优化:切换到很大的模数 q ′ q' q(使得存在恰当的单位根),在 Z q ′ [ x ] / ( x n + 1 ) \mathbb Z_{q'}[x]/(x^n+1) Zq[x]/(xn+1) 上执行不完全 NTT,最后计算 School 乘法。需要立即 InvNTT 并计算模约简,维持结果的正确性。
  2. 对 NTRU 的优化:切换到很大的维度 N N N(使得可以执行 NTT),切换到很大的模数 q ′ q' q(使得存在恰当的单位根),在 Z q ′ [ x ] / ( x N + 1 ) \mathbb Z_{q'}[x]/(x^N+1) Zq[x]/(xN+1) 上利用 Good 和 Mixed-radix 计算不完全 NTT,最后计算 School 乘法。需要立即 InvNTT 并计算模约简,维持结果的正确性。
  3. 对 LAC 的优化:切换到很大的模数 q ′ q' q(使得存在恰当的单位根),在 Z q ′ [ x ] / ( x n + 1 ) \mathbb Z_{q'}[x]/(x^n+1) Zq[x]/(xn+1) 上执行不完全 NTT,最后计算 School 乘法。需要立即 InvNTT 并计算模约简,维持结果的正确性。

采取 AVX2 实现上述的 NTT 乘法,考虑:快速模约简、层融合、延迟模约简、配置寄存器不相互依赖、不同 NTT 技巧的复杂度。

硬件优化

Sei18

[Sei18] 考虑了 Kyber 的 NTT 算法的 AVX2 实现。

首先是 Montgomery 模乘算法的修改:[Mon85] 采用了 q ′ = − q − 1 ( m o d β ) q'=-q^{-1}\pmod\beta q=q1(modβ),计算无符号数的模乘,并保证输出结果是一个非负数。而 [Sei18] 采取了有符号数的变体,它最终的减法恰好消除了低位,没有进位,因此可以只计算高位。这就更加适合 AVX2,更密集的向量化

在这里插入图片描述

其次是专用的模约简,对于 Kyber 采用的素数 q = 7681 q=7681 q=7681,它的二进制表示是稀疏的

在这里插入图片描述

上述算法的输出范围是冗余的 − 2 15 + 4 q ≤ r < 2 15 − 3 q -2^{15}+4q \le r < 2^{15}-3q 215+4qr<2153q,但是足够被用于加法/减法,将输入输出维持在单个 word 内。对于两个 words 的模约简,可以采用 Montgomery 模约简,常数 1 1 1 预计算为 β ( m o d q ) \beta \pmod q β(modq) 即可。

对于一般的素数 q q q,我们也希望只在单个 word 内完成模约简。采取 Barrett 算法:

在这里插入图片描述

它的输出范围是 0 ≤ r ≤ q 0 \le r \le q 0rq(对于 a ≡ 0 ( m o d q ) a\equiv 0\pmod q a0(modq) 会冗余)。另外,假如 step 1 采取了预计算 − v -v v,并修改 step 4 成为 r = a + t r=a+t r=a+t,此时的输出范围是 − q ≤ r ≤ 0 -q \le r \le 0 qr0。通过交错使用这两种 modes,可以维持模加的结果在 [ − q , q ] [-q,q] [q,q] 范围内。

最后是 Lazy reduction:因为 Kyber 的模数满足 4 q < 2 15 = β / 2 4q<2^{15}=\beta/2 4q<215=β/2,因此加法结果可以累积起来,直到它溢出单个 word 之前,才执行一次 Barrett 模约简。在 NTT 中,我们采用了 Montgomery 模乘,它的结果范围是 − q < r ′ < q -q<r'<q q<r<q,因此每一层迭代,系数增长至多为 q q q,从而可以连续 3 3 3 层蝴蝶,累积但不溢出 β / 2 \beta/2 β/2,此时执行模约简依然可以得到正确结果。

Neon NTT

[BHK+21] 对比了 Montgomery 和 Barrett 的关系,提出了 Montgomery 模乘的类比:Barrett 模乘。不过,Shoup’s NTL 中其实已经采用了这种算法。

我们考虑四种 ”整数近似“ 函数:下取整 ⌊ z ⌋ \lfloor z \rfloor z,上取整 ⌈ z ⌉ \lceil z \rceil z,圆整 ⌊ z ⌉ \lfloor z \rceil z,以及 “ 2 Z 2\mathbb Z 2Z-取值” ⌊ z ⌉ 2 : = 2 ⋅ ⌊ z / 2 ⌉ \lfloor z \rceil_2:= 2 \cdot \lfloor z/2 \rceil z2:=2z/2,这些函数可简记为 [  ⁣ [ z ]  ⁣ ] [\![z]\!] [[z]],并且并不要求 [  ⁣ [ z ]  ⁣ ] = z , ∀ z ∈ Z [\![z]\!]=z,\forall z\in \mathbb Z [[z]]=z,zZ

对于取模函数,可以采用上述的任意近似函数来定义,
z ( m o d [ [ ⋅ ] ] N ) : = z − N ⋅ [  ⁣ [ z N ]  ⁣ ] z \pmod{^{[[\cdot]]} N} := z - N \cdot [\![\dfrac{z}{N}]\!] z(mod[[]]N):=zN[[Nz]]

  • z ( m o d N ) z \pmod{N} z(modN),采用下取整的定义,范围 U N : = { 0 , 1 , ⋯   , N − 1 } U_N:=\{0,1,\cdots,N-1\} UN:={0,1,,N1},称为 canonical unsigned representative
  • z ( m o d ± N ) z \pmod{^\pm N} z(mod±N),采用圆整的定义,范围 S N : = { − ⌊ N / 2 ⌋ , ⋯   , ⌊ ( N − 1 ) / 2 ⌋ } S_N:=\{-\lfloor N/2\rfloor ,\cdots,\lfloor (N-1)/2\rfloor\} SN:={N/2,,⌊(N1)/2⌋},称为 canonical signed representative
  • z ( m o d ⌊ ⋅ ⌉ 2 N ) z \pmod{^{\lfloor\cdot\rceil_2} N} z(mod2N),采取 2 Z 2\mathbb Z 2Z-取值的定义,范围 { − N , ⋯   , N } \{-N,\cdots,N\} {N,,N},并且具有相同的奇偶性

我们首先给出 Barrett 和 Montgomery 的最基本描述:

在这里插入图片描述

根据这些整数近似函数的性质,可以计算出 Barrett 输出范围是 < 3 N / 2 <3N/2 <3N/2,假如继续约束 N < R / 3 N<R/3 N<R/3,那么输出结果 < R / 2 <R/2 <R/2,从而在 ( m o d R ) \pmod{R} (modR) 下的表示是唯一确定的。此时,就可以把 Barrett 的一些双精度运算简化为单精度运算,

在这里插入图片描述

对于 Montgomery,正如 [Sei18] 所说, m o n t + mont^+ mont+ 可以优化为单精度运算。但是 m o n t − mont^- mont 出于进位的限制,无法这么优化。

在这里插入图片描述

两种 Montgomery 之间的关系:

在这里插入图片描述

Barrett 和 Montgomery 之间的关系:

在这里插入图片描述

类比着 Montgomery 模乘:

在这里插入图片描述

[BHK+21] 提出了 Barrett 模乘:

在这里插入图片描述

可以采取单精度指令的优化,只需要三条指令,

在这里插入图片描述

[BHK+21] 还继续考虑了 Armv8-A Neon vector instructions 提供的各种特殊指令,以优化 Barrett 和 Montgomery 的模约简、模乘的计算效率。

Mixed-radix NTT

[DL22] 考虑了 radix- 2 k 1 2^{k_1} 2k1 以及 radix- 2 k 2 2^{k_2} 2k2 的混合,给出了 FPGA 的实现。

对于一般的 radix-2 NTT 算法,在硬件上难以实现高吞吐量。因此他们将大的 NTT 拆解为若干小的 NTT,从而实现硬件的加速。

在这里插入图片描述

他们继续讨论了如何在 FPGA 上更好地实现这个算法。

TensorFHE

三种专用硬件:GPGPU(通用目的 GPU)、FPGA(可编程逻辑门阵列)、ASIC(专用集成电路)

[FWX+23] 给出了第一个使用 GPGPU 上的 TCU(Tensor Core Unit)加速的 FHE 实现。TCU 是最近的技术,它用于计算 4 × 4 4 \times 4 4×4 的矩阵乘法,速度比通用的 Cuda Core 并行度高得多。

  • TCU 是一种专用于计算 multiply and accumulate (MAC) 运算的单元,不支持其他的运算
  • TCU 仅支持低精度运算(至多 INT8 的整数,至多 FP16 的浮点数),返回值是 type-s32,但是只有低 16 比特是有效的
  • TCU 是 warp 级别的,(二维)逐片运算;而 CUDA 是 thread 级别的,(一维)逐点运算
  • 专用计算卡(比如 A100,好贵、已禁运)中包含远比 CUDA 多的 TCU,但是游戏卡中的 TCU 比 CUDA 少得多

在这里插入图片描述

[FWX+23] 的实现分为两层,

  1. API Layer:在 CPU 上运行,将用户的 FHE 操作自动分解为若干 basic kernel,并且确定批处理参数
  2. Kernel Layer:在 GPGPU 上运行,执行 7 7 7 种 basic kernel,包括 NTT(使用了 TCU 加速)、Hadamard Multiplication、Element-wise Addition/Subtract、Frobenius Map(槽置换)、Conjugate(共轭)、Basis Conversion(在不同 RNS 下切换)

他们测试了基本实现的各项性能,发现存在:Read-After-Write(RAW)数据依赖问题、线程间的资源竞争、GPU 占用率不高、TCU 不支持取模运算、TCU 仅支持低精度运算,一系列的问题。

因为 NTT 需要多层的蝴蝶迭代,每个蝴蝶都需要计算取模运算,不同层的蝴蝶有数据依赖关系,因此不适合在 TCU 上加速。[FWX+23] 简单地采取暴力计算,原本的 DFT 计算公式为:
∀ k ∈ [ N ] ,    A k = ( ∑ i = 0 N − 1 ζ 2 N ( 2 i + 1 ) k ⋅ a N ) ( m o d q ) \forall k \in [N],\,\, A_k = \left( \sum_{i=0}^{N-1} \zeta_{2N}^{(2i+1)k} \cdot a_N \right) \pmod{q}\\ k[N],Ak=(i=0N1ζ2N(2i+1)kaN)(modq)
就是矩阵乘 A N = W N × a N A_N = W_{N} \times a_N AN=WN×aN,我们采取 RNS 系统,使得环元素的系数是远小于 32 32 32 比特的整数,然后使用长度 64 64 64 比特的累加器,直到计算完矩阵乘法之后,才统一执行取模运算。

但是上述的矩阵 W ∈ Z q N × N W \in \mathbb Z_q^{N \times N} WZqN×N 过大了,我们可以利用 Baby-Step Giant-Step(BSGS),将它转化为如下形式
A N 1 × N 2 = ( ( W 1 × a N 1 × N 2 ) ⊙ W 2 ) × W 3 T ( m o d q ) \begin{aligned} A_{N_1 \times N_2} = \left( (W_1 \times a_{N_1 \times N_2}) \odot W_2 \right) \times W_3^T \pmod{q} \end{aligned} AN1×N2=((W1×aN1×N2)W2)×W3T(modq)
其中的 a N 1 × N 2 a_{N_1 \times N_2} aN1×N2 是向量 a N , N = N 1 N 2 a_{N}, N=N_1N_2 aN,N=N1N2 的二维化,三个矩阵分别为:
W 1 = [ ζ 2 N 1 ( 2 i + 1 ) j ] i ∈ [ N 1 ] , j ∈ [ N 1 ] ∈ Z q N 1 × N 1 W 2 = [ ζ 2 N ( 2 i + 1 ) j ] i ∈ [ N 1 ] , j ∈ [ N 2 ] ∈ Z q N 1 × N 2 W 3 = [ ζ N 2 i j ] i ∈ [ N 2 ] , j ∈ [ N 2 ] ∈ Z q N 2 × N 2 \begin{aligned} W_1 &= \begin{bmatrix} \zeta_{2N_1}^{(2i+1)j} \end{bmatrix}_{i \in [N_1],j \in [N_1]} \in \mathbb Z_q^{N_1 \times N_1}\\ W_2 &= \begin{bmatrix} \zeta_{2N}^{(2i+1)j} \end{bmatrix}_{i \in [N_1],j \in [N_2]} \in \mathbb Z_q^{N_1 \times N_2}\\ W_3 &= \begin{bmatrix} \zeta_{N_2}^{ij} \end{bmatrix}_{i \in [N_2],j \in [N_2]} \in \mathbb Z_q^{N_2 \times N_2} \end{aligned} W1W2W3=[ζ2N1(2i+1)j]i[N1],j[N1]ZqN1×N1=[ζ2N(2i+1)j]i[N1],j[N2]ZqN1×N2=[ζN2ij]i[N2],j[N2]ZqN2×N2
这里的两个矩阵乘,以及一个阿达玛积,都是使用 GPGPU 暴力计算的。由于输入矩阵 a N 1 × N 2 , W 1 , W 3 a_{N_1 \times N_2}, W_1, W_3 aN1×N2,W1,W3 都是 32 32 32 比特的,因此可以将简单地按字节拆分 4 4 4 个同样形状的矩阵,输入到 TCU 中计算 GEMM(利用 4 × 4 4 \times 4 4×4 基本矩阵乘搭建出来)。矩阵 W 2 W_2 W2 不必拆分,阿达玛积是直接在 CUDA 上运算的,这需要把 TCU 的计算结果融合为单个 32 32 32 比特矩阵。

在这里插入图片描述

此外,密文的 RNS 表示的索引是 ( L , N ) (L,N) (L,N),对于多个密文的同一个 L L L 的各种参数/资源是相同的。但是自然的索引 ( C , L , N ) (C,L,N) (C,L,N) 是以密文标号 C C C 主序的,导致了同一个 L L L 索引的多个密文数据是间断存储的。如果我们重排内存,按照 ( L , C , N ) (L,C,N) (L,C,N) 存储,那么就可以对于不同密文 C C C 的同一个 L L L 上的 NTT 域连续读取,它们共享了 NTT 参数,可以打包在一起计算,隐藏 I/O 延迟、资源复用。

最后 [FWX+23] 在 A100 上的实现,比 FPGA 表现的更好一些,但是依旧比 ASIC 慢得多。

Others

[HLS+22] 分别在 Intel AVX2 平台、ARM Cortex M4 平台,实现了 NTRU、Kyber、Saber 三种 KEM 方案,一共 6 6 6 个实现。他们使用汇编语言编写 NTT 算法,然后使用 CryptoLine 工具包(形式化语言,不依赖编程模型),半自动化地分析验证这些实现的正确性以及一些属性。

[ZLH+23] 优化了 High-radix NTT 的访存模式,提出了一种低复杂度的 cross-bank-write-back memory mapping scheme,通过时间延迟累积蝴蝶的结果,最后串行写回内存。最后,他们设计了 radix-4 NTT 的 FPGA 加速器。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值