用python将YOLO11-seg 部署到树莓派CM4上

1. 应用背景

查看系统处理器的型号,用

uname -a  或者

arch

如下所示

2. 环境安装

numpy 安装

python3 -m pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

opencv安装

sudo apt-get update

sudo apt-get install python3-opencv -y

pyqt5安装

sudo apt-get install python3-pyqt5

scipy安装

sudo apt-get install python3-scipy -y

torch安装

参考:树莓派(7):树莓派4B+安装Pytorch新版本1.3(python3.7)_pymodbus python3.7-CSDN博客

其他版本的torch下载地址:

Releases · KumaTea/pytorch-arm

安装后报错

解决办法,安装 libopenblas-dev

sudo apt-get update
sudo apt-get install libopenblas-dev

 其他库的安装

pip3 install importlib-metadata
pip3 install importlib
pip3 install thop
pip3 install timm

sudo apt-get install python3-shapely

sudo apt-get install python3-matplotlib

sudo apt-get install python-yaml

sudo apt-get install python3-tqdm

timm安装,这个要多几个安装步骤

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

python3 -m pip install safetensors

python3 -m pip install timm

3. python torch推理 速度测试

yolo11-seg 实例分割网络,输入尺寸是960,batch为1,耗时在20s左右,算法在10.5GFLOPS

4. onnxruntime推理测试

模型转为onnx后再进行推理测试

编译好的onnxruntime.wheel 包

built-onnxruntime-for-raspberrypi-linux/wheels/bullseye/onnxruntime-1.9.1-cp310-cp310-linux_armv7l.whl at master · nknytk/built-onnxruntime-for-raspberrypi-linux · GitHub

 运行时报错:

导致这个问题的原因是编译onnxruntime的gcc版本比较高,而我树莓派的gcc版本比较低,所以在树莓派上运行时会报错。

因为torch的速度已经要20秒左右很慢了, onnx推理速度估计提高不了多少,这个不符合我的要求,就不再鼓捣了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44886699

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值