1. 应用背景
查看系统处理器的型号,用
uname -a 或者
arch
如下所示
2. 环境安装
numpy 安装
python3 -m pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
opencv安装
sudo apt-get update
sudo apt-get install python3-opencv -y
pyqt5安装
sudo apt-get install python3-pyqt5
scipy安装
sudo apt-get install python3-scipy -y
torch安装
参考:树莓派(7):树莓派4B+安装Pytorch新版本1.3(python3.7)_pymodbus python3.7-CSDN博客
其他版本的torch下载地址:
Releases · KumaTea/pytorch-arm
安装后报错
解决办法,安装 libopenblas-dev
sudo apt-get update
sudo apt-get install libopenblas-dev
其他库的安装
pip3 install importlib-metadata
pip3 install importlib
pip3 install thop
pip3 install timm
sudo apt-get install python3-shapely
sudo apt-get install python3-matplotlib
sudo apt-get install python-yaml
sudo apt-get install python3-tqdm
timm安装,这个要多几个安装步骤
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
python3 -m pip install safetensors
python3 -m pip install timm
3. python torch推理 速度测试
yolo11-seg 实例分割网络,输入尺寸是960,batch为1,耗时在20s左右,算法在10.5GFLOPS
4. onnxruntime推理测试
模型转为onnx后再进行推理测试
编译好的onnxruntime.wheel 包
运行时报错:
导致这个问题的原因是编译onnxruntime的gcc版本比较高,而我树莓派的gcc版本比较低,所以在树莓派上运行时会报错。
因为torch的速度已经要20秒左右很慢了, onnx推理速度估计提高不了多少,这个不符合我的要求,就不再鼓捣了。