In-Depth Study and Future Development Trends of LabVIEW and NI Hardware

Introduction

This report aims to conduct an in-depth study of National Instruments (NI)'s LabVIEW software platform and its core hardware product lines, including the PXI, CompactRIO, DAQ, RF, and Vision series. The scope of the study covers the current application status, technical advantages, performance optimization strategies, system integration methods, and software architecture design of these platforms in key application areas such as test and measurement, industrial automation, aerospace, automotive, and scientific research. Concurrently, the report will explore the development trends of LabVIEW and NI hardware over the next 1-3 years, particularly in conjunction with Artificial Intelligence/Machine Learning (AI/ML), cloud integration, software architecture evolution, hardware technology development, and the market competitive landscape.

NI's LabVIEW, with its unique graphical programming language (G language) and tight integration with hardware, holds a significant position in the engineering field, especially in scenarios requiring rapid development and deployment of measurement and control systems. Based on existing research findings, this report will elaborate on the key technical details and future development directions of these platforms.

NI Hardware Platforms and Core Capabilities

NI offers a range of modular, scalable hardware platforms that work closely with LabVIEW software to meet a wide range of application needs.

PXI (PCI eXtensions for Instrumentation)

PXI is an open, multi-vendor standard based on PCI and PCI Express bus technology, providing a high-performance, modular hardware platform for test, measurement, and automation applications. A PXI system typically consists of a chassis, controller, and modules, supporting various instrument modules such as data acquisition, signal generation, RF measurement, and switching. Its advantages lie in high throughput, low latency, and precise synchronization capabilities, making it suitable for high-performance testing applications. Companies like Keysight and Rohde & Schwarz also offer PXI-compatible products, forming a multi-vendor ecosystem.

CompactRIO (cRIO)

CompactRIO is a rugged, reconfigurable embedded system designed for industrial control and monitoring applications requiring high reliability, real-time performance, and determinism. It comprises three core components:

  1. Real-Time Processor (RTOS): Runs a real-time operating system, responsible for the system's overall control logic, data analysis, state monitoring, and other real-time tasks. It excels at floating-point math and analysis, providing reliable and predictable behavior. The LabVIEW RT Module allows programs to run in this environment, which is crucial for systems with strict requirements for latency and timing accuracy (2024-10-01).

  2. Reconfigurable FPGA (Field-Programmable Gate Array): Provides hardware-level parallel processing capabilities, suitable for tasks requiring high precision and low latency, such as high-speed data acquisition, precise motion control, and complex signal processing. The LabVIEW FPGA Module allows developers to program directly on the hardware, leveraging hardware parallelism for efficient resource utilization (2024-10-01).

  3. Interchangeable Industrial I/O Modules: Provide interfaces for connecting with various sensors and actuators, supporting a wide range of measurement and control signal types.

CompactRIO's architecture makes it highly suitable for implementing Hardware-in-the-Loop (HIL) testing, predictive maintenance, particle accelerator control, engine ECU testing, and oil well drilling control, among other applications (CompactRIO Application Areas).

DAQ (Data Acquisition)

NI DAQ systems are complete solutions for measuring physical or electrical phenomena (such as voltage, current, temperature, pressure), including NI devices, sensors, and software like LabVIEW or NI FlexLogger™. A typical DAQ system consists of sensors, DAQ measurement hardware, and a computer. NI offers various DAQ hardware interfaces (USB, Ethernet, PCI Express, PXI) and types (multifunction I/O, CompactDAQ, PXI) to meet different performance and application needs. The deep integration of LabVIEW with NI DAQ provides users with a complete workflow from sensor to data analysis (2025-04-21).

RF (Radio Frequency)

NI provides PXI modular RF instruments for testing and measurement applications in wireless communication, radar, satellite communication, and more. These modules typically feature high bandwidth, wide frequency range, and flexible software control capabilities, and can be combined with LabVIEW to build complex RF test systems. BAE Systems' use of NI PXI and LabVIEW to develop an RF cable test suite is an example of its application in aerospace RF testing (BAE Systems Develops RF Cable Test Suite Using NI PXI and LabVIEW).

Vision

The NI Vision product line offers machine vision hardware and software solutions for industrial inspection, automation, quality control, and other fields. Core software includes the Vision Development Module (VDM) and Vision Builder for Automated Inspection (VBAI). VDM provides a rich library of image processing and analysis algorithms that can be programmed in environments like LabVIEW. VBAI offers a configurable environment that requires no programming. NI-IMAQ and NI-IMAQdx are driver software used for image acquisition (NI Vision Software Suite). The combination of LabVIEW and NI Vision is fundamental to implementing vision-based automation and inspection systems.

LabVIEW Software Environment and Architecture

LabVIEW is NI's core software product, based on its graphical programming language, G language, which combines dataflow and event-driven programming (2025-03-17). Its basic building blocks include Virtual Instruments (VIs), function modules (Modules), dataflow, and event-driven structures (2025-03-17). LabVIEW is well-suited for developing large test applications and supports collaborative development among multiple users (2024-04-29).

Software Architecture Design Patterns

To build stable, maintainable, and scalable large LabVIEW applications, choosing the appropriate software architecture is crucial. LabVIEW offers several common architecture options (2024-07-03):

  • Single Loop Architecture: Suitable for simple tasks, easy to implement, but lacks scalability.

  • Producer/Consumer Architecture: Separates data acquisition and processing using queues, enabling parallelism, suitable for real-time data processing and user interaction, but relatively complex (2024-07-03).

  • State Machine Architecture: Handles complex control logic by defining states and transitions, suitable for complex control systems and test sequences, flexible and easily extensible (2024-07-03).

  • Queued Message Handler (QMH): Based on queues and message mechanisms, enables highly modular design, suitable for managing multiple tasks, easy to extend and maintain, but has high architectural complexity (2024-07-03).

  • Actor Framework: Based on object-oriented principles, provides advanced parallelism and message passing, enabling loosely coupled design, suitable for large, complex systems (2024-07-03).

In industrial automation system design, it is usually necessary to define both the system architecture and the software architecture (2024-05-08). LabVIEW's architecture typically employs a layered design to achieve high cohesion and low coupling (2025-03-17). Modular design, state machine architecture, and event-driven programming are key measures to ensure LabVIEW's stability and reliability in automation equipment (2024-07-05).

Support for Large System Development

LabVIEW provides various support tools and practices for large system development (2024-04-29):

  • Configuration Management Tools: Can integrate with third-party source code control tools to manage multi-user development.

  • Traceability Mapping: Verifies application quality and completeness based on requirements.

  • Object-Oriented Design Patterns: Supports object-oriented programming.

  • Code Reuse Capabilities: Improves development efficiency.

  • Test Validation and Code Deployment Best Practices: Ensures system quality and reliable deployment.

Lawrence Livermore National Laboratory utilized LabVIEW and the PXI platform for automated maintenance processes at the National Ignition Facility, increasing productivity by 3 times compared to traditional programming languages (LabVIEW Application in Large System Development). SpaceX also relies on LabVIEW to control rocket engine test stands, launch pad operations, rocket monitoring, and spacecraft control (LabVIEW Application at SpaceX).

In-Depth Discussion of Key Technologies

Performance Optimization

In systems based on LabVIEW and NI hardware, performance optimization is crucial for ensuring system responsiveness, determinism, and throughput. Common performance bottlenecks include excessive CPU utilization, slow disk write speeds, and improper memory management.

Optimization Strategies and Techniques:

  • LabVIEW Code Optimization: Utilize parallel processing (e.g., parallel loops), efficient memory management, and optimized dataflow structures.

  • Real-Time Operating System (RTOS) Configuration: Properly configure RTOS priorities and scheduling policies to ensure the determinism of critical tasks.

  • FPGA Programming: Offload time-critical, computationally intensive, or highly parallel tasks to the FPGA to significantly improve determinism and throughput.

  • Specific Application Scenario Optimization:

    • High-speed data acquisition: Use DMA (Direct Memory Access) transfer mode to reduce CPU load.

    • Complex control algorithms: Implement hardware-accelerated control algorithms (e.g., PID control) in the FPGA for millisecond-level response (Hardware-Based Control Algorithms).

  • Hardware Timer Priority: Increase hardware timer priority to ensure precise time scheduling.

  • Simplify Front Panel Update Frequency: Reduce unnecessary front panel updates to lower the load on the UI thread.

  • Disk Write Optimization:

    • Use 'Get Disk Information.vi' to monitor write speed (Disk Write Bottleneck Detection).

    • Consider RAID0 arrays or NVMe SSD solutions to improve storage performance (Disk Write Bottleneck Detection).

  • CPU Utilization Monitoring: Consider optimization measures when CPU utilization consistently exceeds 70% (CPU Utilization Alert Threshold).

Real-Time Systems (RT) and FPGA

The LabVIEW RT Module and LabVIEW FPGA Module are core components for implementing high-performance, deterministic systems.

  • LabVIEW RT Module: Enables programs to run in an RTOS, providing reliable and predictable behavior, suitable for industrial automation, embedded control, and real-time data acquisition requiring high responsiveness and stability (2024-10-01). Strict time scheduling is achieved through Timed Loops, ensuring tasks are completed within preset times, reducing latency and jitter (Precision Time Control).

  • LabVIEW FPGA Module: Allows developers to program at the hardware level, leveraging FPGA parallelism for high-precision, low-latency applications such as motion control, high-speed data acquisition, and complex signal processing (2024-10-01).

  • Combining RT and FPGA: In many applications, the RT module manages the overall control logic, while the FPGA handles low-level high-speed tasks (e.g., sensor data acquisition, precise motion control). This software-hardware collaborative mode is key to implementing complex real-time systems (2024-10-01).

  • Separating Critical Tasks: When using the RT module, it is recommended to separate critical tasks from non-critical tasks to ensure important control tasks are not affected by other tasks (2024-10-01).

Specific Module Applications: Aerospace and Automotive Testing

LabVIEW and NI hardware are widely used in aerospace and automotive testing, particularly for HIL testing and fault injection.

  • Hardware-in-the-Loop (HIL) Testing: NI HIL test platforms feature an open software and hardware architecture, support third-party modeling tools, and provide high-performance analog/digital I/O, bus interfaces (CAN, LIN, FlexRay), and fault injection hardware (NI Hardware-in-the-Loop (HIL) Test Platform). Mazda Motor Corporation used the NI platform to build an HILS system, integrating noise simulators, GPS simulators, etc., improving system prototype quality, reducing upgrade costs (90%), and shortening time to market (LabVIEW Application in the Automotive Industry).

  • Fault Injection Unit (FIU): FIU technology is widely used in aerospace, automotive, and power system HIL testing to simulate various fault conditions and evaluate system response. NI's open-source FIU custom device project integrates multiple FIU functions and is a valuable resource for learning advanced LabVIEW hardware interaction (NI's FIU (Fault Injection Unit) Custom Device Open Source Project).

  • Automotive Industry Applications: The NI platform is used by almost all automotive manufacturers and suppliers, covering engine systems, ignition systems, test benches, hybrid/fuel cells, chassis systems, and automotive electronics testing (infotainment, sensor testing) (LabVIEW Application in the Automotive Industry). Automotive electronic system testing requires high throughput, integrity, low cost, and compatibility with various buses and other systems (Requirements for Automotive Electronic System Testing). NI provides advanced systems for automotive infotainment system testing, helping manufacturers achieve automated testing and shorten time to market (NI Application in Automotive Infotainment System Testing).

  • Aerospace Applications: BAE Systems used NI PXI and LabVIEW to develop an RF cable test suite, utilizing LabVIEW's toolkits and custom analysis functions for data processing and report generation (BAE Systems Develops RF Cable Test Suite Using NI PXI and LabVIEW).

  • DLL Calls: The method of calling dynamic link libraries based on LabVIEW is an important feature of modular program design, which helps in building complex applications (Method for Calling Dynamic Link Libraries (DLL) in LabVIEW).

Data Processing and Management

LabVIEW and NI DAQ systems play a crucial role in data acquisition, real-time processing, and management.

  • Data Acquisition: NI DAQ systems provide a complete chain from sensor to software, supporting various signal types and hardware interfaces (NI DAQ System Overview). Advantech also offers the DAQNavi/SDK development kit, which supports the LabVIEW environment (Advantech's DAQ Solutions).

  • Real-Time Data Processing: LabVIEW software can perform real-time processing of acquired data, which is essential in applications such as intelligent monitoring systems (LabVIEW Application in Intelligent Monitoring Systems).

  • Data Management:

    • Power Outage Protection: Achieved through UPS communication interfaces, ring buffers (retaining at least the last 5 minutes of data), and system shutdown event callbacks (Power Outage Protection Mechanism).

    • Data Archiving: Establish data archiving rules, such as automatically compressing data older than 3 months, to improve maintainability (Project Standardization and Maintenance Strategy).

    • Error Handling: For common error codes (e.g., excessive sampling rate, buffer overflow), it is necessary to check device specifications, reduce the number of channels, increase the buffer size, or optimize processing logic (Handling Common Error Codes).

System Integration and Standardization

System integration is the process of connecting different hardware and software components to build a complete system. The modularity and openness of LabVIEW and NI hardware facilitate system integration.

  • Hardware and Software Integration: LabVIEW RT is tightly integrated with NI hardware (such as cRIO, PXI), allowing control programs to be deployed directly on the hardware without third-party middleware (Real-Time Hardware and Software Integration).

  • Integration with Third-Party Systems: HMIs can communicate with CompactRIO via Ethernet for monitoring (HMI Communication with CompactRIO). The NI HIL platform supports third-party hardware and software modeling tools (NI Hardware-in-the-Loop (HIL) Test Platform).

  • Project Standardization: Measures such as creating custom DAQmx template VIs, standardizing error code definitions, and developing general data playback analysis tools can improve project standardization and maintainability (Project Standardization and Maintenance Strategy). Regular sensor calibration and updating calibration coefficients are also important steps (Project Standardization and Maintenance Strategy).

Integration with AI/ML and Vision

LabVIEW and NI Vision are actively integrating with AI/ML technologies to enhance machine vision and data analysis capabilities.

  • NI Vision Software Suite: Provides tools for image acquisition, processing, and analysis, forming the basis for AI/ML integration (NI Vision Software Suite).

  • LabVIEW AI Vision Toolkit (Non-NI Vision): This is a third-party toolkit based on LabVIEW, designed to lower the barrier to AI development, providing a graphical programming interface, and supporting various cameras and image operators (LabVIEW AI Vision Toolkit (Non-NI Vision)).

  • Deep Learning Framework Support: This toolkit supports calling and inference of models from various deep learning frameworks such as TensorFlow, PyTorch, Caffe, Darknet, ONNX, and Paddle, and supports hardware acceleration like Nvidia GPU, Intel, TPU, and NPU (Support for Multiple Deep Learning Frameworks).

  • Application Examples: Provides various application examples such as object classification, detection, measurement, image segmentation, face recognition, OCR, and human pose estimation (Rich Application Examples, Human Pose Estimation).

  • Model Integration: Can seamlessly integrate object detection models like YOLOv3/v4/v5/v6/v7/v8/YOLOX/PP-YOLO, SSD, and Faster R-CNN, and use CUDA for accelerated inference (YOLO Model Integration).

  • Performance Advantages: Through algorithm optimization, running models in LabVIEW can be faster than in Python, which is very practical for high-performance requirements in industrial settings (Performance Advantages).

  • Integration with OpenCV: LabVIEW can be combined with the OpenCV library to quickly build face recognition systems, leveraging LabVIEW's graphical programming and OpenCV's algorithm library (LabVIEW Integration with OpenCV). Building a face recognition system involves steps such as software installation, environment configuration, project creation, front panel design, and Block Diagram programming (Face Recognition System Building Steps). Pre-trained models from OpenCV can be used for face detection (Face Detection Models), and methods like LBPH, Eigenfaces, and Fisherfaces can be used for face recognition (Face Recognition Methods).

  • NI AI Vision Toolkit: NI's AI Vision Toolkit enables engineers to leverage existing ML/DL algorithms for image processing and object recognition, and integrates tightly with data acquisition hardware (NI AI Vision Toolkit).

The combination of AI/ML with LabVIEW/Vision makes it possible to achieve smarter decision-making and control in the test and measurement and automation fields, such as AI-based defect detection and anomaly identification in predictive maintenance.

Cloud Integration and Internet of Things (IoT)

LabVIEW and NI hardware play an important role in IoT and big data applications, especially in data acquisition and edge processing.

  • LabVIEW's Role in Big Data and IoT: LabVIEW, through its data acquisition, real-time processing, signal analysis, and control functions, is suitable for processing and analyzing big data, improving system efficiency, optimizing resource usage, and providing real-time decision support (LabVIEW's Role in Big Data Applications). It is particularly suitable for application scenarios requiring integrated software and hardware and real-time data analysis, such as remote monitoring, device interconnection, and collaborative control (LabVIEW's Role in Big Data Applications). LabVIEW can be used to build IoT platforms, collect sensor data, perform analysis and real-time feedback, and integrate with cloud platforms for data upload, storage, and processing (LabVIEW's Role in Big Data Applications). In large-scale distributed IoT systems, LabVIEW can assist in controlling and managing multiple devices (LabVIEW's Role in Big Data Applications).

  • NI DAQ System Application in IoT: NI DAQ systems are key components for data acquisition in IoT applications, used to measure various physical and electrical signals (NI DAQ System Overview).

  • Cloud Platform Integration Potential: Although existing research indicates that LabVIEW and NI DAQ systems have the potential for integration with cloud platforms, allowing data to be uploaded to the cloud for storage and processing (LabVIEW's Role in Big Data Applications), the research results did not provide specific details on integration schemes, such as common communication protocols (MQTT, OPC UA), integration methods for mainstream cloud platforms (AWS, Azure, NI InsightCM), data security, scalability, edge computing, and how to utilize cloud analysis services for advanced analysis and prediction.

Suggested Cloud Integration Scheme Considerations (Speculation):

Considering the needs of industrial IoT, future cloud integration schemes may involve:

  1. Communication Protocols: Adopt lightweight or industrial standard communication protocols such as MQTT or OPC UA to transmit data collected by NI hardware to the cloud.

  2. Cloud Platform Selection: Integrate with mainstream industrial cloud platforms such as AWS IoT, Azure IoT Hub, or NI InsightCM, leveraging their data storage, processing, analysis, and visualization services.

  3. Edge Computing: Perform data preprocessing, filtering, and local analysis on edge devices like CompactRIO to reduce cloud load and latency. The capabilities of LabVIEW RT and FPGA are well-suited for implementing edge computing logic.

  4. Data Security: Implement security measures such as data encryption, authentication, and access control to ensure data security during transmission and storage.

  5. Scalability: Design a scalable system architecture to handle future growth in data volume and device count.

  6. Cloud Advanced Analytics: Utilize data mining, machine learning, and artificial intelligence services provided by cloud platforms for advanced analysis and prediction of collected data, such as equipment fault prediction and process optimization.

Specific implementation details and best practices for these aspects require further in-depth research.

Market Size and Driving Factors

The modular instrument market is growing steadily, expected to maintain a compound annual growth rate (CAGR) of approximately 9-10% in the coming years, reaching a market size of $4.388 billion by 2033 (Modular Instrument Market Growth). The electronic measurement instrument market is also in a period of rapid development, deeply integrating with fields such as communication, semiconductors, aerospace, and new energy vehicles, driving industrial upgrading (Electronic Measurement Instrument Market Development). The Chinese industrial software market is developing rapidly, expected to exceed 400 billion yuan by 2025 (Chinese Industrial Software Market).

Key drivers for market growth include:

  • Emerging Technologies and Standards: The development of wireless communication technologies such as 5G/6G and Wi-Fi 6E/7 poses higher frequency, bandwidth, and speed requirements for test and measurement instruments (5G and Semiconductors, Instrument Performance Improvement).

  • Semiconductor Industry: Advanced chip manufacturing processes require more complex test solutions (5G and Semiconductors).

  • Automotive Electronics: The popularization of electric vehicles (EV) and advanced driver-assistance systems (ADAS) has led to a surge in the number and complexity of automotive electronic systems, resulting in explosive growth in test and measurement demand, particularly for battery management system testing and autonomous driving sensor calibration (Automotive Electronics, Electric Vehicle Testing).

  • Industrial Automation and IoT: The development of Industry 4.0 and IoT has driven demand for automated testing, monitoring, and control systems (Other Applications).

Competitive Landscape

NI faces intense competition in the test and measurement and automation fields. Major competitors include:

  • Keysight Technologies: Offers a wide range of test and measurement instruments and systems, including PXI and AXIe modular products, with advantages in RF and high-performance testing (Major Competitors, Keysight's PXI Solutions, PXI and AXIe Modular Instruments).

  • Rohde & Schwarz: A global leader in electronic test and measurement equipment manufacturing, with strong capabilities in wireless communication and RF/microwave fields (Major Competitors, Rohde & Schwarz Test and Measurement Products).

  • Advantech: Provides industrial automation solutions including DAQ devices, and offers specific solutions in areas such as electric vehicle testing (Major Competitors, Advantech's Test and Measurement Solutions, Electric Vehicle Testing).

  • Other Vendors: Companies like Pickering Interfaces and Marvin Test Solutions also hold a share in the modular instrument market (Major Companies).

The Chinese market is accelerating the process of domestic substitution in the electronic measurement instrument field (Domestic Substitution). Domestic manufacturers like MegaSig have also launched low-code test and measurement software platforms aimed at lowering the development threshold (Low-Code Test and Measurement Platform).

NI's Competitiveness and Challenges

NI's core competitiveness lies in its LabVIEW software platform and tight integration with hardware, as well as its long-term accumulation on modular platforms like PXI and CompactRIO. LabVIEW's graphical programming and rich toolkits give it an advantage in rapid prototyping and system integration. NI has a deep customer base and application experience in specific vertical markets such as aerospace, automotive, and semiconductors.

However, NI also faces challenges:

  • Software Architecture Evolution: How to better support modern software development practices (such as version control, CI/CD, automated testing) and integration with other software ecosystems (such as Python, MATLAB) is a continuous challenge. Although the research did not find a specific roadmap for the future evolution of LabVIEW's software architecture (LabVIEW Software Architecture Evolution Future Development Trends 2025-2028), this is a direction of general industry concern.

  • AI/ML and Cloud Integration: While NI Vision and third-party toolkits provide AI/ML integration capabilities, further development is needed to enable deeper, more convenient deployment of advanced AI/ML models on NI hardware, and to achieve seamless, secure, and scalable integration with mainstream cloud platforms.

  • Market Competition: Facing the investment of strong competitors like Keysight in high-performance instruments and emerging technologies, as well as the efforts of domestic manufacturers in domestic substitution, NI needs to continuously innovate to maintain competitiveness.

  • Hardware Technology Development: As emerging technologies continuously increase the performance requirements for test and measurement instruments, NI needs to continue investing in R&D, introducing new materials, processes, and components to improve hardware performance.

Based on the above analysis, the development trends for LabVIEW and NI hardware in the next 1-3 years may include (Speculation):

  1. Software-Defined Instrumentation (SDI) and Deeper Modularity: Instruments will continue to evolve towards platform-based, software-based, and modular directions. LabVIEW, as the software core, will play a larger role, providing more flexible and easily configurable test and measurement solutions.

  2. Accelerated AI/ML Integration: NI will further strengthen the integration of LabVIEW and Vision software with AI/ML technologies, potentially launching more official and user-friendly AI toolkits, supporting more deep learning frameworks and hardware accelerators, enabling engineers to more conveniently develop and deploy intelligent applications on the NI platform, such as AI-based automated inspection, predictive maintenance, and data analysis.

  3. Enhanced Cloud Integration Capabilities: NI may provide more mature and standardized cloud integration solutions, supporting mainstream industrial IoT protocols and cloud platforms, enabling remote monitoring, storage, analysis, and management of data. Edge computing capabilities will be further strengthened on platforms like CompactRIO to support distributed intelligent applications.

  4. Software Architecture Modernization: The LabVIEW development environment and programming language may introduce more modern software development features, improve support for version control, CI/CD, and automated testing, and enhance the efficiency and collaboration of large project development. Interoperability with popular languages like Python will be further strengthened.

  5. Hardware Performance Improvement and Specific Application Optimization: NI will continue to launch higher-performance PXI and CompactRIO modules to meet the bandwidth, speed, and accuracy requirements of emerging applications such as 5G/6G, EV, and ADAS. Customized solutions for specific vertical markets will become more prominent.

  6. Domestic Substitution and Localization: In the Chinese market, NI needs to actively respond to the trend of domestic substitution, strengthen local support and services, and potentially establish closer ties with domestic partners.

  7. Low-Code/No-Code Tool Supplement: In addition to LabVIEW's graphical programming, more low-code or no-code tools may emerge to lower the development threshold for specific applications and attract a wider user base.

Overall, in the coming years, LabVIEW and NI hardware will place greater emphasis on software intelligence, openness, and interoperability. Hardware will continue to improve performance to meet the needs of emerging applications, while cloud integration and edge computing will become important development directions to adapt to the challenges of the industrial IoT and big data era.

Challenges and Opportunities

Challenges

  • Rapid Technological Iteration: The rapid development in fields such as AI/ML, cloud computing, and communication technologies requires NI to continuously update its software and hardware platforms to maintain technological leadership.

  • Complex System Integration: Building complex systems involving multiple hardware, software, and communication protocols requires specialized knowledge and experience. Simplifying the integration process is a challenge.

  • Data Security and Privacy: In cloud integration and IoT applications, ensuring data security and privacy is crucial.

  • Talent Development: Composite talents proficient in LabVIEW, NI hardware, and emerging technologies (AI/ML, Cloud) are relatively scarce.

Opportunities

  • Emerging Market Growth: Emerging markets such as electric vehicles, autonomous driving, 5G/6G, and industrial IoT have huge demand for test and measurement and automation systems, providing vast development space for NI.

  • Software Value Enhancement: As instruments evolve towards software-defined directions, the value proportion of software in the overall solution will increase, further highlighting LabVIEW's software advantages.

  • AI/ML Empowerment: Deeply integrating AI/ML technology into LabVIEW and NI hardware can provide users with smarter and more efficient solutions, creating new application scenarios.

  • Cloud and Edge Computing: Utilizing cloud and edge computing capabilities can expand the application scope of NI systems, enabling remote monitoring, distributed control, and big data analysis.

  • Collaboration in the Context of Domestic Substitution: In the Chinese market, despite facing the challenge of domestic substitution, there are also opportunities to collaborate with domestic enterprises to jointly develop solutions.

Conclusion

LabVIEW and NI hardware (PXI, CompactRIO, DAQ, RF, Vision) constitute a powerful test and measurement and automation platform. Through in-depth research, we have understood the current status and potential of these platforms in performance optimization, real-time capabilities, FPGA applications, specific industry applications (aerospace, automotive), software architecture, and integration with AI/ML and cloud.

In the next 1-3 years, LabVIEW and NI hardware will continue to develop in the direction of modularity, software definition, intelligence, and connectivity. AI/ML and cloud integration will be important technical focuses, expected to bring revolutionary changes to the test and measurement and automation fields. NI needs to continuously strive in areas such as software architecture modernization, hardware performance improvement, addressing market competition, and seizing emerging market opportunities.

For users, a deep understanding of LabVIEW's software architecture design patterns, mastering performance optimization techniques, flexibly utilizing RT and FPGA modules, and actively exploring the combination with AI/ML and cloud technologies will be key to building high-performance, intelligent, and scalable test and measurement and automation systems. Simultaneously, paying attention to industry standards and market trends and selecting appropriate hardware platforms and software tools are crucial for project success.


Note: The predictions regarding future development trends in this report contain speculative content, which has been marked in the text.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力努力努力Ya

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值