【LeetCode1】Hash算法

这篇博客介绍了如何使用哈希表高效地解决两数之和的问题,以及寻找字符串中第一个唯一字符的算法。通过创建哈希表,在线性时间内完成查找,降低了时间复杂度到O(N)。对于两数之和,通过遍历数组并检查哈希表中是否存在目标值减去当前值;对于第一个唯一字符,同样遍历字符串,遇到重复字符时更新哈希表中的位置信息。最终找到第一个唯一字符的位置或返回-1表示没有唯一字符。
摘要由CSDN通过智能技术生成

Q1 两数之和

vector<int> twoSum(vector<int>& nums, int target) {
    unordered_map<int, int> h;
    for (int i = 0; i < nums.size(); i ++) {
        auto it = h.find(target - nums[i]);
        if (it != h.end()) {
            return {it->second, i};
        }
        h[nums[i]] = i;
    }
    return {};
}

思路:

利用哈希表,从nums第一个元素nums[0]开始遍历,若哈希表h中有target-nums[i],则返回target-nums[i]的下标和i,若没有,则将(nums[i], i)压入哈希表中。

时空复杂度:

时间复杂度:O(N) 空间复杂度O(N)

Q387 字符串中的第一个唯一字符

int firstUniqChar(string s) { 
    unordered_map<int, int> position;
    int n = s.size();
    for (int i = 0; i < n; i ++) {
        if (position.count(s[i])) {
            position[s[i]] = -1;
        }
        else {
            position[s[i]] = i;
        }
    }
    int first = n;
    for (auto [_, pos] : position) {
        if (pos != -1 && pos < first) {
            first = pos;
        }
    }
    if (first == n) {
        first = -1;
    }
    return first;
}

 思路:

利用哈希表,对字符串从第一个元素开始进行遍历,如果s[i]已经在position中,则说明s中不只有一个s[i],这时将s[i]的位置标记为-1,如果s[i]不在position中,则将[s[i], i]压入哈希表position中。

时空复杂度:

时间复杂度:O(n),其中 n 是字符串 s 的长度。

空间复杂度:O(∣Σ∣),其中Σ 是字符集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值