- 博客(21)
- 收藏
- 关注
原创 使用Transfomer对时间序列进行预测(基于PyTorch代码)
这是在这个项目中很重要的代码段,所以在这里需要重点分析一下。在代码的一开始作者就提出这个是基于文章《Attention is all you need》来进行计算的。Transfomer是由encoder,decoder还有feed forward组成的。模型构建:在这个项目中,用所有已知的历史数据对未来一个时期的数据进行预测。假设X1到X5分别是过去第1到第5期的历史数据,预测X2的时候,只使用X1的数据来进行预测;预测X3的时候则使用X1和X2的数据;
2023-10-14 23:05:44 5067 1
原创 Transformer代码流程学习笔记
这篇主要是以下这篇文献的阅读笔记: https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec图来自文章《attention is all you need》transfomer的整个流程主要分为以下几个: 首先将每个词的信息放入到模型中在代码中存在forward, forward方法是 PyTorch 模块中的一个特殊方法。每当你向 PyTorch 模型或自定义模块传递输入时(例如,model(
2023-10-02 17:27:00 287 1
原创 MAC如何使用pycharm配置阿里云服务器
因为需要使用MAC Pro来跑深度学习的代码,但是奈何运转速度属实太慢 (已经使用了Anaconda 的情况下),每次调参都需要再等一晚上,决定使用服务器来进行了。
2023-09-25 20:42:11 486
原创 Python项目中import的问题
在对python的项目运行中,常常会遇到import的问题,特别是多层文件架构的情况下.这样的好处包括: 1) 提高代码的复现性 2) 便于维护,可以很快发现bug以链接中的文件架构为例子: projectname中有两个文件夹construct 和 decoration. 在这些文件下面有不同的py文件, 一个py文件是一个模块.
2023-07-11 22:12:02 158
原创 ConV-1d遇到的数据维度问题
在这里我将ConV-1d都换成了ConV-2d,目前代码是可以运行的。我使用的pytorch是2.0.1。后来发现是Conv-1d和Conv-2d的问题,其实在这个代码包底下也有很多人提出了疑问。仔细检查了数据的维度,后来又使用了github上原数据集, 但是还是在报错。将pytorch版本换为老版本进行计算。
2023-07-06 18:26:39 1743 5
原创 R Factor
1. Factors for categorical variables factor主要是对种类的变量进行定义。在这里,并没有对blood进行factor的定义,所以blood只是一系列的text list.
2023-06-19 17:32:18 59
原创 Deep Learning中Transformer的学习笔记
首先就是那篇最著名的文章《Attention is all you need》, 链接如下: https://arxiv.org/abs/1706.03762。
2023-05-29 16:58:18 155
原创 PyTorch tensors & NumPy学习笔记
Numpy是python中用于构建矩阵的重要的package,那么如何转化numpy和tensor中的数据呢?其中要注意的一点是,转化出来的数据格式总是float32。
2023-05-23 01:12:05 107 1
原创 PyTorch代码学习笔记1
对于tensor的dimension容易困惑, 对于[2,2] 而言,是一个1-dimension, 但是如果是[[2,2],[3,2]] 来说是2-dimension. 其实感觉可以用我们常用的维度来看,一个平面就是一维, 两个就是2维,可以使用ndim来查看, 如果要看形状的话可以用.shape来看.
2023-05-22 19:44:13 81
原创 新手小白学习deep learning笔记 1
今天的笔记主要是基于视频:Deep learning是machine learning的一部分machine leraning的作用: 如下图所示,正常的流程是有了规律然后进行产出,但是machine learning就是在有投入和产出的情况下找出规律为什么可以使用machine learning: 只要能把所有的投入和产出都转化为数字的形式,那任何东西都可以使用machine learning。
2023-05-17 20:25:11 61 1
原创 新手小白对于GCN图像卷积网络的理解(1)
这三个特征构成的矩阵被称为邻接矩阵(adjacency matrices). 值得注意的是, 当对顶点进行不同的排序的时候,构成的矩阵很有可能是不一样的. 比如下图所示,虽然他们表示的是同一张图,但是因为顶点的排序不一样,所以构成的图片也是不一样的. 而且可以看出来,构成的这个图其实是比较稀疏的.是对图的属性进行变换,不改变图的结构。对于图的预测,一般也是预测点,边和全局的特征. 在这个最简单的GNN模型中,分别对点,边和全局进行MLP,可以得到最后的预测结果.
2023-05-15 20:28:10 249
原创 CVX Matlab 在Mac上安装出问题
在Matlab上安装CVX的时候出了问题,从CVX的包里点进去setup点击启动,却一直无法成功.输入命令后回车,系统会要求输入电脑的开机密码,输入密码后回车即可。选择了这个选项以后便可以顺利安装,运行.
2023-04-11 17:55:36 917 1
原创 DataWhale学习笔记--数据可视化
数据可视化的教程其实之前学过很多,对于以下的三个包其实也是比较熟悉的.但是在引入matplotlib的时候还是会忘记完整的写法.%matplotlib inlineimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt这次比较感兴趣的是,因为之前写前端的时候用过Echarts,感觉还是挺好用的,所以看到这次的教程写的pyecharts,所以我就在CSDN里面搜了一下相关的信息.Pyecharts 可视化_木
2022-05-23 20:28:31 159
原创 DataWhale学习笔记--数据重构
数据聚合与运算1. 在这个章节中用到的最多的函数是GroupBypandas.DataFrame.groupby — pandas 1.4.2 documentation跟着官方的指导手册来完成题目df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', 'Parrot', 'Parrot'], 'Max Speed': [380., 370., 24., .
2022-05-21 20:46:33 191
原创 Datawhale学习笔记Day01
1. 课程的网址链接课程地址:https://github.com/datawhalechina/hands-on-data-analysis https://gitee.com/datawhalechina/hands-on-data-analysisB站视频:https://www.bilibili.com/video/BV1Uv411p77r2. 关于numpy与pandas的介绍文档NumPy 参考手册 | NumPy 中文User Guide — pandas 1.4.2 do
2022-05-17 22:15:18 104
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人