每日一道算法(搜索插入位置——二分查找,时间复杂度为O(logn) )

本文探讨了时间复杂度的概念,包括O(1)、O(n)、O(logn)和O(nlogn),并重点解析了O(logn)在二分查找中的应用。介绍了二分查找算法在寻找排序数组中目标值索引时的效率,以及最坏情况下时间复杂度为O(log n)。文章提供了一道算法题,要求在保持O(log n)时间复杂度的情况下,找到目标值在排序数组中的插入位置。
摘要由CSDN通过智能技术生成

时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。

时间复杂度是什么意思?那么时间复杂度为 O(log n ) 是什么意思?
那么先理解一下 O(1) ,O(n) 是什么意思:
O(1) 表示一次操作即可直接取得目标元素(比如字典或哈希表);
O(n) 意味着先要检查 n 个元素来搜索目标;
时间复杂度为O(nlogn)。
  就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。
归并排序就是O(nlogn)的时间复杂度

而O(logn) 其实就是二分查找的不断缩小一半搜索范围的一个计算得到的。
昨天刚写的文章就是专门写二分查找的:
添加链接描述

今天这道算法题 也同样可以使用二分查找不断地去逼近查找。

二分查找的两个极端,一个就是一次性就找到了目标值,那么时间复杂度就是O(1),
最差的结果就是 时间复杂度就是O(log n ) 。

题目:
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值