地物分类

本文探讨了影像分类精度的评估方法,包括采用影像重选感兴趣区自评和使用Googleearth等第三方软件选点进行对比分析。通过两种方法的精度评定,分析了监督分类与非监督分类的精度差异,以及不同地物分类中存在的错分、误分情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采用影像重选感兴趣区自评和Google earth等第三方软件选点两种方法进行精度评定和对比分析。

其一是重新选一些新的、目视非常明显的地类作为感兴趣区,以感兴趣区代替整幅图像进行自评。

其二是使用Google earth同期数据目视解译,每种地类随机选20-50个点跟影像上的数据进行比较,计算精度指标。

显然,自选评定主观性较强。
监督分类精度高于非监督分类。

由于“混合像元”,同物异谱、同谱异物等原因,不同地物之间的分类精度差异明显,存在错分、误分情况。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值