
特征提取
文章平均质量分 77
对预处理后的数据进行特征提取,主要包括线性的小波能量和非线性动力学特征的近似熵、样本熵、排列熵特征参数的计算方法
牛杂师傅
这个作者很懒,什么都没留下…
展开
-
脑电信号处理学习笔记(三)——pymrmr
pymrmr模块的安装和使用 \: \: \: \:github链接一、模块介绍在Python 3使用mRMR特征选择算法,pymrmr提供了方法 \: \:pymrmr.mRMR()pymrmr.mRMR(df, ‘MIQ’, K)返回排序后的列名(list)Parameters:df:数据文件(pandas.DataFrame)第一列要是标签其他列要是特征量列的名称要是字符串内部选择方法(‘MIQ’或‘MID’)(str)MIQ:互信息熵MID:互信息差K:要选取的特征原创 2021-04-01 20:49:12 · 2987 阅读 · 6 评论 -
脑电信号特征提取——排列熵
三、排列熵\quad优点:抗噪能力强、计算量小、所需数据长度较短1、算法步骤设信号时间序列为{X(i),i=1,2,…,n},进行相空间重构后,得到如下矩阵:[x(1)x(1+τ)⋯x(1+(m−1)τ)x(2)x(2+τ)⋯x(2+(m−1)τ)⋮⋮⋱⋮x(k)x(k+τ)⋯x(k+(m−1)τ)]\left[ \begin{matrix} x(1) & x(1+\tau) & \cdots & x(1+(m-1)\tau)\\ x(2) & x(2+\tau)原创 2020-11-25 23:02:23 · 4067 阅读 · 2 评论 -
脑电信号特征提取——样本熵
二、样本熵是对近似熵的一种改进算法,是一种不同于近似熵而且不进行自身匹配的统计量方法近似熵有两个缺点:近似熵在与自身匹配时具有偏差性;近似熵结果的一致性较差样本熵具有如下特点:具有比时域统计(均值、方差等)更好的估计效果;对原始数据处理时无需进行粗粒化提取;可用于由确定信号与随机信号组成的混合信号。1、算法步骤设原始信号为{x(i),i=1,2,…,N},按照下面公式重构出 m 维向量,用 y(i)表示,{ y(i),i=1,2,…,M,M=N-m+1},即:y原创 2020-11-25 12:13:52 · 8002 阅读 · 2 评论 -
脑电信号特征提取——近似熵
近似熵 \:1、算法步骤设原始信号为{x(i),i=1,2,…,N},按照下面公式重构出 m 维向量,用 y(i)表示,{ y(i),i=1,2,…,M,M=N-m+1},即:y(i)=x(i),x(i+1),x(i+2),,x(i+m−1)y(i)={x(i),x(i+1),x(i+2), ,x(i+m-1)}y(i)=x(i),x(i+1),x(i+2),,x(i+m−1)其中,m 是嵌入维数,是参与比较序列的长度,即窗口长度。计算 y(i)与 y(j)任意分量之间的欧式距离 d{y(i)原创 2020-11-25 11:13:38 · 4998 阅读 · 4 评论