Task 6 函数与Lambda表达式

群内编号:129-木铎铎
本笔记记录之前学习Python时不熟悉或未接触的知识点以及一些个人认为能帮助理解的例子。


函数与Lambda表达式

Part 1 函数

Python 把函数也当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如:

1)参数是函数
2)返回值是函数

1. 函数的定义

2. 函数的调用

3. 函数文档

def MyFirstFunction(name):
    "函数定义过程中name是形参"
    # 因为它只是一个形式,表示占据一个参数位置
    print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))


MyFirstFunction('我爱Python')  
# 传递进来的“我爱Python”叫做实参,因为它是具体的参数值!

print(MyFirstFunction.__doc__)  
# 函数定义过程中name是形参

help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
#    函数定义过程中name是形参

4. 函数参数

从简到繁的参数形态如下:

1)位置参数 (positional argument)
2)默认参数 (default argument)
3)可变参数 (variable argument)
4)关键字参数 (keyword argument)
5)命名关键字参数 (name keyword argument)
6)参数组合

1)位置参数
def functionname(arg1):
    "函数_文档字符串"
    function_suite
    return [expression]

arg1 - 位置参数 ,这些参数在调用函数 (call function) 时位置要固定。

2)默认参数
def functionname(arg1, arg2=v):
    "函数_文档字符串"
    function_suite
    return [expression]

arg2 = v - 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。
默认参数一定要放在位置参数后面,不然程序会报错。

Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。

3)可变参数

传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。

def functionname(arg1, arg2=v, *args):
    "函数_文档字符串"
    function_suite
    return [expression]

*args - 可变参数,可以是从零个到任意个,自动组装成元组。
加了星号( * )的变量名会存放所有未命名的变量参数。

def printinfo(arg1, *args):
    print(arg1)
    for var in args:
        print(var)
# 注意这里调用可变参数的时候不再加星号了

printinfo(10)  # 10
printinfo(70, 60, 50)

# 70
# 60
# 50
4. 关键字参数
def functionname(arg1, arg2=v, *args, **kw):
    "函数_文档字符串"
    function_suite
    return [expression]

**kw - 关键字参数,可以是从零个到任意个,自动组装成字典。

def printinfo(arg1, *args, **kwargs):
    print(arg1)
    print(args)
    print(kwargs)


printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}
「可变参数」和「关键字参数」的同异总结如下:
  • 可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。
  • 关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。
5)命名关键字参数
def functionname(arg1, arg2=v, *args, *, nkw, **kw):
    "函数_文档字符串"
    function_suite
    return [expression]

*, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *。
如果要限制关键字参数的名字,就可以用「命名关键字参数」
使用命名关键字参数时,要特别注意不能缺少参数名。
【例子】

def printinfo(arg1, *, nkw, **kwargs):
    print(arg1)
    print(nkw)
    print(kwargs)


printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}

printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
6. 参数组合

5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:

  • 位置参数、默认参数、可变参数和关键字参数。

  • 位置参数、默认参数、命名关键字参数和关键字参数。
    要注意定义可变参数和关键字参数的语法:

  • *args 是可变参数,args 接收的是一个 tuple

  • **kw 是关键字参数,kw 接收的是一个 dict

命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置参数。

Warning:虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数很难懂。

5. 函数的返回值

6. 变量作用域

  • Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
  • 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
  • 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
  • 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
  • 当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了。
num = 1

def fun1():
    global num  # 需要使用 global 关键字声明
    print(num)  # 1
    num = 123
    print(num)  # 123

fun1()
print(num)  # 123

内嵌函数

def outer():
    print('outer函数在这被调用')

    def inner():
        print('inner函数在这被调用')

    inner()  # 该函数只能在outer函数内部被调用

outer()
# outer函数在这被调用
# inner函数在这被调用

闭包

这里附上另一个讲解的非常好的博客:

https://www.cnblogs.com/s-1314-521/p/9763376.html

  • 闭包是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数
  • 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
  • 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域
def funX(x):
    def funY(y):
        return x * y

    return funY

i = funX(8)
print(type(i))  # <class 'function'>
print(i(5))  # 40

闭包的返回值通常是函数。

def make_counter(init):
    counter = [init]

    def inc(): counter[0] += 1

    def dec(): counter[0] -= 1

    def get(): return counter[0]

    def reset(): counter[0] = init

    return inc, dec, get, reset

inc, dec, get, reset = make_counter(0)
inc()
inc()
inc()
print(get())  # 3
dec()
print(get())  # 2
reset()
print(get())  # 0

如果要修改闭包作用域中的变量则需要 nonlocal 关键字

def outer():
    num = 10

    def inner():
        nonlocal num  # nonlocal关键字声明
        num = 100
        print(num)

    inner()
    print(num)


outer()

# 100
# 100
递归

如果一个函数在内部调用自身本身,这个函数就是递归函数。
设置递归的层数,Python默认递归层数为 100

import sys

sys.setrecursionlimit(1000)

Part 2

Lambda 表达式(匿名函数)

lambda argument_list: expression
  • lambda - 定义匿名函数的关键词。

  • argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样

  • :- 冒号,在函数参数和表达式中间要加个冒号。

  • expression - 只是一个表达式,输入函数参数,输出一些值。

  • expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值

  • 匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数

def sqr(x):
    return x ** 2


print(sqr)
# <function sqr at 0x000000BABD3A4400>

y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
# <function <lambda> at 0x000000BABB6AC1E0>

y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20))  # 30

func = lambda *args: sum(args)
print(func(1, 2, 3, 4, 5))  # 15

匿名函数的应用

函数式编程是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用

非函数式编程

def f(x):
    for i in range(0, len(x)):
        x[i] += 10
    return x
# 这里甚至不要return,x都会被改变
# 也就是说,这个函数影响了外部变量x的值

x = [1, 2, 3]
f(x)
print(x)
# [11, 12, 13]

函数式编程

def f(x):
    y = []
    for item in x:
        y.append(item + 10)
    return y


x = [1, 2, 3]
f(x)
print(x)
# [1, 2, 3]

匿名函数常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:

  • 参数是函数 (filter, map)
  • 返回值是函数 (closure)
    如,在 filter和map函数中的应用:

filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(templist)  # <filter object at 0x000001BE4A538608>
print(list(templist))  # [1, 3, 5, 7, 9]

map(function, *iterables) 根据提供的函数对指定序列做映射。

m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(m1)  # <map object at 0x000001BE4A533F88>
print(list(m1))  
# [1, 4, 9, 16, 25]

m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))  
# [3, 7, 11, 15, 19]

也可以自行定义高阶函数。

def apply_to_list(fun, some_list):
    return fun(some_list)

lst = [1, 2, 3, 4, 5]
print(apply_to_list(sum, lst))
# 15

print(apply_to_list(len, lst))
# 5

print(apply_to_list(lambda x: sum(x) / len(x), lst))
# 3.0

练习题

1)怎么给函数编写文档?
在函数开头使用引号对函数的用法进行说明,之后可以使用 . __ doc __方法和help()函数查看该注释;

2)怎么给函数参数和返回值注解?
使用函数文档进行注解;

3)闭包中,怎么对数字、字符串、元组等不可变元素更新?
将变量定义为nonlocal.

4)分别根据每一行的首元素和尾元素大小对二维列表 a = [[6, 5], [3, 7], [2, 8]] 排序。(利用lambda表达式)

a = [[6, 5], [3, 7], [2, 8]]

a.sort(key=lambda x: x[0])
print(a)  # [[2, 8], [3, 7], [6, 5]]

a.sort(key=lambda x: x[1])
print(a)  # [[6, 5], [3, 7], [2, 8]]

5)利用python解决汉诺塔问题。

有a、b、c三根柱子,在a柱子上从下往上按照大小顺序摞着64片圆盘,把圆盘从下面开始按大小顺序重新摆放在c柱子上,尝试用函数来模拟解决的过程。

(提示:将问题简化为已经成功地将a柱上面的63个盘子移到了b柱)
在这里插入图片描述
思路分析:

  • 当只有1个盘子,即n=1时,直接把盘子从a移动到c上即可;
  • 当n=2时,先把小盘子移动到b上,在把大盘子移动到c上,最后把小盘子从b移动到c上;
  • 当n=3时,首先借助c把上面2个小盘子移动到b上,把最下面的大盘子移动到c上,最后再借助a把2个小盘子移动到c上;
  • 考虑一般的情况,首先把n-1个小盘子移动到b上,把最下面的到案子移动到c上,最后借助a把n-1个小盘子移动到c上.

可以发现,完成汉诺塔问题的步骤可以使用递归方式进行编程实现。

def hano(n, a, b, c):
    if n == 1:
        c.append(a.pop())
    else:
        hano(n-1, a, c, b)
        c.append(a.pop())
        hano(n-1, b, a, c)
    
    return a, b, c

n = 4
a = [str(i) for i in range(1, n+1)]
a.reverse()
b = []
c = []
a, b, c = hano(n, a, b, c)
print(a)  # []
print(b)  # []
print(c)  # ['4', '3', '2', '1']
# n = 64自然也相同,因为运行等待时间太久,这里不再赘述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值