群内编号:129-木铎铎
本笔记记录之前学习Python时不熟悉或未接触的知识点以及一些个人认为能帮助理解的例子。
函数与Lambda表达式
Part 1 函数
Python 把函数也当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如:
1)参数是函数
2)返回值是函数
1. 函数的定义
2. 函数的调用
3. 函数文档
def MyFirstFunction(name):
"函数定义过程中name是形参"
# 因为它只是一个形式,表示占据一个参数位置
print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))
MyFirstFunction('我爱Python')
# 传递进来的“我爱Python”叫做实参,因为它是具体的参数值!
print(MyFirstFunction.__doc__)
# 函数定义过程中name是形参
help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
# 函数定义过程中name是形参
4. 函数参数
从简到繁的参数形态如下:
1)位置参数 (positional argument)
2)默认参数 (default argument)
3)可变参数 (variable argument)
4)关键字参数 (keyword argument)
5)命名关键字参数 (name keyword argument)
6)参数组合
1)位置参数
def functionname(arg1):
"函数_文档字符串"
function_suite
return [expression]
arg1 - 位置参数 ,这些参数在调用函数 (call function) 时位置要固定。
2)默认参数
def functionname(arg1, arg2=v):
"函数_文档字符串"
function_suite
return [expression]
arg2 = v - 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。
默认参数一定要放在位置参数后面,不然程序会报错。
Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。
3)可变参数
传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。
def functionname(arg1, arg2=v, *args):
"函数_文档字符串"
function_suite
return [expression]
*args - 可变参数,可以是从零个到任意个,自动组装成元组。
加了星号( * )的变量名会存放所有未命名的变量参数。
def printinfo(arg1, *args):
print(arg1)
for var in args:
print(var)
# 注意这里调用可变参数的时候不再加星号了
printinfo(10) # 10
printinfo(70, 60, 50)
# 70
# 60
# 50
4. 关键字参数
def functionname(arg1, arg2=v, *args, **kw):
"函数_文档字符串"
function_suite
return [expression]
**kw - 关键字参数,可以是从零个到任意个,自动组装成字典。
def printinfo(arg1, *args, **kwargs):
print(arg1)
print(args)
print(kwargs)
printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}
「可变参数」和「关键字参数」的同异总结如下:
- 可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。
- 关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。
5)命名关键字参数
def functionname(arg1, arg2=v, *args, *, nkw, **kw):
"函数_文档字符串"
function_suite
return [expression]
*, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *。
如果要限制关键字参数的名字,就可以用「命名关键字参数」
使用命名关键字参数时,要特别注意不能缺少参数名。
【例子】
def printinfo(arg1, *, nkw, **kwargs):
print(arg1)
print(nkw)
print(kwargs)
printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}
printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
6. 参数组合
5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:
-
位置参数、默认参数、可变参数和关键字参数。
-
位置参数、默认参数、命名关键字参数和关键字参数。
要注意定义可变参数和关键字参数的语法: -
*args 是可变参数,args 接收的是一个 tuple
-
**kw 是关键字参数,kw 接收的是一个 dict
命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置参数。
Warning:虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数很难懂。
5. 函数的返回值
6. 变量作用域
- Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
- 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
- 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
- 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
- 当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了。
num = 1
def fun1():
global num # 需要使用 global 关键字声明
print(num) # 1
num = 123
print(num) # 123
fun1()
print(num) # 123
内嵌函数
def outer():
print('outer函数在这被调用')
def inner():
print('inner函数在这被调用')
inner() # 该函数只能在outer函数内部被调用
outer()
# outer函数在这被调用
# inner函数在这被调用
闭包
这里附上另一个讲解的非常好的博客:
https://www.cnblogs.com/s-1314-521/p/9763376.html
- 闭包是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
- 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
- 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。
def funX(x):
def funY(y):
return x * y
return funY
i = funX(8)
print(type(i)) # <class 'function'>
print(i(5)) # 40
闭包的返回值通常是函数。
def make_counter(init):
counter = [init]
def inc(): counter[0] += 1
def dec(): counter[0] -= 1
def get(): return counter[0]
def reset(): counter[0] = init
return inc, dec, get, reset
inc, dec, get, reset = make_counter(0)
inc()
inc()
inc()
print(get()) # 3
dec()
print(get()) # 2
reset()
print(get()) # 0
如果要修改闭包作用域中的变量则需要 nonlocal 关键字
def outer():
num = 10
def inner():
nonlocal num # nonlocal关键字声明
num = 100
print(num)
inner()
print(num)
outer()
# 100
# 100
递归
如果一个函数在内部调用自身本身,这个函数就是递归函数。
设置递归的层数,Python默认递归层数为 100
import sys
sys.setrecursionlimit(1000)
Part 2
Lambda 表达式(匿名函数)
lambda argument_list: expression
-
lambda - 定义匿名函数的关键词。
-
argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
-
:- 冒号,在函数参数和表达式中间要加个冒号。
-
expression - 只是一个表达式,输入函数参数,输出一些值。
-
expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
-
匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。
def sqr(x):
return x ** 2
print(sqr)
# <function sqr at 0x000000BABD3A4400>
y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
# <function <lambda> at 0x000000BABB6AC1E0>
y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20)) # 30
func = lambda *args: sum(args)
print(func(1, 2, 3, 4, 5)) # 15
匿名函数的应用
函数式编程是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
例 非函数式编程
def f(x):
for i in range(0, len(x)):
x[i] += 10
return x
# 这里甚至不要return,x都会被改变
# 也就是说,这个函数影响了外部变量x的值
x = [1, 2, 3]
f(x)
print(x)
# [11, 12, 13]
例 函数式编程
def f(x):
y = []
for item in x:
y.append(item + 10)
return y
x = [1, 2, 3]
f(x)
print(x)
# [1, 2, 3]
匿名函数常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:
- 参数是函数 (filter, map)
- 返回值是函数 (closure)
如,在 filter和map函数中的应用:
filter(function, iterable)
过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。
odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(templist) # <filter object at 0x000001BE4A538608>
print(list(templist)) # [1, 3, 5, 7, 9]
map(function, *iterables)
根据提供的函数对指定序列做映射。
m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(m1) # <map object at 0x000001BE4A533F88>
print(list(m1))
# [1, 4, 9, 16, 25]
m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))
# [3, 7, 11, 15, 19]
也可以自行定义高阶函数。
def apply_to_list(fun, some_list):
return fun(some_list)
lst = [1, 2, 3, 4, 5]
print(apply_to_list(sum, lst))
# 15
print(apply_to_list(len, lst))
# 5
print(apply_to_list(lambda x: sum(x) / len(x), lst))
# 3.0
练习题
1)怎么给函数编写文档?
答 在函数开头使用引号对函数的用法进行说明,之后可以使用 . __ doc __方法和help()函数查看该注释;
2)怎么给函数参数和返回值注解?
答 使用函数文档进行注解;
3)闭包中,怎么对数字、字符串、元组等不可变元素更新?
答 将变量定义为nonlocal.
4)分别根据每一行的首元素和尾元素大小对二维列表 a = [[6, 5], [3, 7], [2, 8]] 排序。(利用lambda表达式)
a = [[6, 5], [3, 7], [2, 8]]
a.sort(key=lambda x: x[0])
print(a) # [[2, 8], [3, 7], [6, 5]]
a.sort(key=lambda x: x[1])
print(a) # [[6, 5], [3, 7], [2, 8]]
5)利用python解决汉诺塔问题。
有a、b、c三根柱子,在a柱子上从下往上按照大小顺序摞着64片圆盘,把圆盘从下面开始按大小顺序重新摆放在c柱子上,尝试用函数来模拟解决的过程。
(提示:将问题简化为已经成功地将a柱上面的63个盘子移到了b柱)
思路分析:
- 当只有1个盘子,即n=1时,直接把盘子从a移动到c上即可;
- 当n=2时,先把小盘子移动到b上,在把大盘子移动到c上,最后把小盘子从b移动到c上;
- 当n=3时,首先借助c把上面2个小盘子移动到b上,把最下面的大盘子移动到c上,最后再借助a把2个小盘子移动到c上;
- 考虑一般的情况,首先把n-1个小盘子移动到b上,把最下面的到案子移动到c上,最后借助a把n-1个小盘子移动到c上.
可以发现,完成汉诺塔问题的步骤可以使用递归方式进行编程实现。
def hano(n, a, b, c):
if n == 1:
c.append(a.pop())
else:
hano(n-1, a, c, b)
c.append(a.pop())
hano(n-1, b, a, c)
return a, b, c
n = 4
a = [str(i) for i in range(1, n+1)]
a.reverse()
b = []
c = []
a, b, c = hano(n, a, b, c)
print(a) # []
print(b) # []
print(c) # ['4', '3', '2', '1']
# n = 64自然也相同,因为运行等待时间太久,这里不再赘述