自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 《AI产品经理手册》深度推荐:解锁 AI 产品经理的能力框架

《AI 产品经理手》(全面覆盖了 AI 产品管理的理论与实践,从技术基础到商业化落地,从团队管理到职业发展,为读者提供了构建、管理 AI 产品的完整框架。书中强调伦理与责任,结合大量案例与工具,适合不同阶段的 AI 产品从业者参考。

2025-08-12 21:00:00 639

原创 AI产品经理手册(Ch12-16)AI Product Manager‘s Handbook学习笔记

本书的第三部分(Integrating AI into Existing Traditional Software Products)将围绕着把AI集成到传统软件产品(未使用ML/DL)中的产品设计展开讨论。本部分深入探讨了在现有软件产品中整合 AI 的全过程,从把握各行业 AI 应用趋势,到具体的产品演进策略、设计要点及管理方法。不仅分析了 AI 整合对企业战略、团队文化和技术架构的影响,还通过实际案例展示了如何在保留产品原有优势的基础上,借助 AI 实现功能增强与体验升级,为产品经理提供了从规划到落地。

2025-08-11 21:00:00 710

原创 AI产品经理手册(Ch9-11)AI Product Manager‘s Handbook学习笔记

本部分聚焦于构建 AI-Native 产品的核心设计方法论。系统解析了AI产品设计流程——从用户需求洞察、问题精准定义,到原型实验、用户验证反馈、持续迭代优化,直至美学打磨与文档完善——并提供了每个环节的实践框架与关键考量清单。核心部分深入探讨了AI产品特有的核心挑战:用户深度理解的基石作用、机器学习模型的动态管理需求、产品可解释性的关键意义,以及优先级设定与“讲故事”在体验提升中的价值。并通过实际案例展示了这些原则的实际应用。

2025-08-05 21:00:00 1439

原创 AI产品经理手册(Ch6-8)AI Product Manager‘s Handbook学习笔记

本部分(Part 2 Building an AI-Native Product)围绕 “构建 AI Native产品” 展开,核心是探讨从 0 到 1 打造 AI Native产品的关键环节,包括产品基础、AI/ML 服务产品化、群体定位、技术选择、性能基准、成本与增长等,并通过一个贯穿各章的案例研究具象化这些概念。Ch6-8 从开发阶段、团队构成、技术栈,到产品化策略、行业定制化,系统阐述了关键要素,并通过 Akeira 案例展示了实践应用。核心逻辑是:AI 产品的核心是 “数据驱动的服务产品化”。

2025-08-04 21:00:00 1305

原创 AI产品经理手册(Ch3-5)AI Product Manager‘s Handbook学习笔记

AI Product Manager's Handbook Ch3-5 提供了深度学习技术的全面知识,讲解深度学习与机器学习的区别、多种神经网络和生成式 AI 模型的类型、应用及优劣势,还涉及相关新兴技术、可解释性、伦理责任和成功指南等内容。旨在帮助产品经理在相关产品管理中:做出战略决策、选择合适的模型、应对伦理与合规问题,并提升产品成功概率。

2025-07-29 21:00:00 1397

原创 AI产品经理手册(Ch1-2)AI Product Manager‘s Handbook学习笔记

AI Product Manager's Handbook是AI产品管理者的实战指南,旨在系统化解构人工智能产品的构建逻辑与成功要素。Part1 部分的 Ch1-2 系统梳理人工智能的核心概念、基础设施与工具、模型开发及维护等关键内容,构建 AI 产品管理的知识体系,从核心概念到落地实践形成完整闭环。为 AI 产品经理提供了从理论到实践的全面指导,助力其理解并成功构建、管理 AI 产品。

2025-07-28 21:00:00 1165

原创 AI Engineering: Building Applications with Foundation Models 生成式AI工程化指南,拆解基础模型应用

重磅推荐!Chip Huyen 的《AI Engineering: Building Applications with Foundation Models》!堪称生成式 AI 应用开发的「实战圣经」—— 从基础模型到生产部署,手把手带读者搞定 AI 工程全流程!作者是斯坦福讲师/NVIDIA前技术专家,曾著《Designing Machine Learning Systems》。

2025-07-22 21:00:00 1313

原创 用基础模型构建应用(第十章)AI Engineering: Building Applications with Foundation Models学习笔记

想知道如何构建成功的 AI 应用?前文已涵盖多种基础模型适配特定应用的技术,本章(AI Engineering Architecture and User Feedback AI 工程架构与用户反馈)聚焦如何整合这些技术以打造成功产品。从最基础的模型交互架构讲起,一步步通过增强上下文、搭建防护机制、部署模型网关、优化缓存等实用技巧,构建更可靠的 AI 系统。更有用户反馈收集与利用指南,帮助读者破解模型迭代难题,让 AI 产品从搭建到优化都有章可循!

2025-07-21 21:00:00 1007 1

原创 用基础模型构建应用(第九章)AI Engineering: Building Applications with Foundation Models学习笔记

新模型层出不穷,但让模型在保持性能的同时变得更快、更经济始终是核心需求。本章(Inference Optimization 推理优化)就聚焦这一关键问题,深入探讨了 AI 推理过程中可能遇到的瓶颈,以及从模型、硬件和服务三个层面进行优化的技术与方法。无论是模型运行速度过慢导致用户流失,还是成本过高影响投资回报,本章都能剖析原因并提供切实可行的解决方案,帮助读者更好地理解和优化 AI 推理过程。

2025-07-14 21:00:00 1261

原创 用基础模型构建应用(第八章)AI Engineering: Building Applications with Foundation Models学习笔记

本章(Dataset Engineering 数据集工程)深入探讨了如何构建、优化训练数据集以实现模型的最佳性能。剖析了数据在 AI 开发中的关键地位 —— 从数据整理的核心标准(质量、覆盖范围、数量),到数据获取与标注的实践方法,再到数据增强与合成的前沿技术(包括传统方法与 AI 驱动的创新手段),详解模型蒸馏等数据应用场景。无论是解决数据稀缺、隐私敏感等痛点,还是提升模型的泛化能力与效率,这篇文章都为 AI 开发者和研究者提供了系统的理论指导与实操方案,帮助读者在数据驱动的 AI 开发中少走弯路。

2025-07-11 00:25:14 1293

原创 用基础模型构建应用(第七章)AI Engineering: Building Applications with Foundation Models学习笔记

​如何让通用 AI 模型更好地适配特定业务场景?比如让大模型精准生成符合格式要求的 JSON 数据,或是在医疗、法律等专业领域给出更可靠的回答?究竟该选择微调(Finetuning)还是RAG,或者提示工程?当模型内存占用过高、硬件资源有限时,该如何高效完成定制化训练?本章(Finetuning 微调)聚焦模型微调(Finetuning)这一 AI 工程的核心技术,提供系统性的解决方案。

2025-07-08 22:51:35 1336 1

原创 用基础模型构建应用(第六章)AI Engineering: Building Applications with Foundation Models学习笔记

本章(RAG and Agents)是理解现代AI应用如何获取动态信息、执行自动化操作的关键指南。ChatGPT 这样的 AI 模型如何“知道”训练数据之外的信息?它们如何执行复杂任务,比如分析数据表或规划行程?答案就藏在 RAG(检索增强生成) 和 智能体(Agents) 这两项革命性的技术背后。本章深入解析这两大核心技术,清晰阐述RAG和Agent的原理与实践。

2025-07-03 23:20:05 1343 1

原创 用基础模型构建应用(第五章)AI Engineering: Building Applications with Foundation Models学习笔记

提示工程作为无需修改模型权重即可引导 AI 行为的核心技术,既是基础模型落地应用的最短路径,也是被误解最深的工程领域。虽然提示工程看起来不过是 “摆弄文字直到生效”,但其背后藏着系统的实验方法论、上下文效率优化策略,与恶意攻击的攻防博弈。从拆解提示的基础结构(系统提示与用户提示的协同),到防御越狱攻击(Jailbreaking)的实战技巧,本章(Prompt Engineering 提示工程)将揭开这项被低估技术的双重面貌:它既是零成本适配模型的最敏捷武器,又是需要统计学思维与系统化评估的严谨学科。

2025-07-01 21:00:00 638

原创 用基础模型构建应用(第四章)AI Engineering: Building Applications with Foundation Models学习笔记

​本章关注 “如何将这些方法应用到实际业务场景中”—— 从评估标准的业务化定义,到公共基准的筛选策略,再到评估流程与业务指标的绑定,形成从方法论到落地实践的完整闭环。系统拆解了 AI 应用评估的三大维度:如何定义领域特定能力、生成质量、指令遵循性等评估标准;如何在开源模型与 API 服务间做出决策;以及如何设计评估流程。通过建立科学的评估体系,实现模型能力与业务价值的精准对齐。

2025-06-30 21:00:00 2255

原创 用基础模型构建应用(第三章)AI Engineering: Building Applications with Foundation Models学习笔记

由于评估的重要性和复杂性,AI Engineering: Building Applications with Foundation Models安排了两章内容进行深入探讨。本章(Evaluation Methodology 评估方法论)将系统介绍评估开放式模型的各种方法及工作原理与局限性。第四章(Evaluate AI Systems 评估人工智能系统)则聚焦实践应用,指导读者如何运用这些评估方法为具体应用场景选择合适的模型,并构建完整的评估流程体系。

2025-06-24 22:26:03 1246

原创 用基础模型构建应用(第二章)AI Engineering: Building Applications with Foundation Models学习笔记

从 GPT-4 为何更懂英语而非小语种,到医疗 AI 如何通过专业数据突破通用模型局限,再到 ChatGPT 背后的 “人类偏好驯化” 技术 —— AI Engineering: Building Applications with Foundation Models第二章(Understanding Foundation Models 理解基础模型)将系统讲解基础模型的训练数据陷阱、Transformer 架构的统治力密码、模型规模与性能的平衡法则,以及采样策略如何造就 AI 的创意与 “离谱”,帮助建立

2025-06-23 07:30:00 1163

原创 用基础模型构建应用(第一章)AI Engineering: Building Applications with Foundation Models学习笔记

在决定构建AI应用前,有必要了解这一过程涉及哪些内容,并回答诸如:这个应用有必要吗?是否一定需要AI?我必须自己来构建这个应用吗?AI Engineering: Building Applications with Foundation Models ​​​​​​​的第一章(构建AI应用的基础模型)将帮助你回答这些问题,让我们对基础模型能够实现什么有一个直观的认识。

2025-06-18 08:53:46 931

原创 AI产品经理技术篇:必懂的LLM与Agent技术进阶课

本文将从LLM的底层工作机制出发,解析其“记忆知识却不懂逻辑”的矛盾特性,进而探讨如何通过Agent技术弥补LLM的缺陷,构建真正可落地的智能系统。探讨如何通过RAG解决LLM的“健忘症”,何时选择Agent而非传统编码方案,以及企业应用中的典型陷阱与最佳实践。

2025-06-06 08:00:00 1389

原创 AI产品经理技术篇:从传统AI到生成式AI,解密大模型的核心概念

摘要:本文系统解析了大模型的核心技术概念。首先区分了传统判别式AI与生成式AI的本质差异,强调后者通过学习数据分布生成新内容的能力。其次详细阐述了参数体系,包括模型参数(权重/偏置)、超参数和生成控制参数的分类与作用。接着介绍了Token与Embedding机制,说明如何将离散文本转化为连续向量表示。然后重点剖析了Transformer架构的自注意力机制及其上下文理解原理。最后完整演示了大模型生成文本时"预测下一个Token"的迭代流程,包括编码、概率计算和选择策略。这些概念共同构成了理

2025-05-30 07:00:00 1531

原创 AI产品经理技术篇:AI领域常用术语解析

本文汇总了AI领域的核心术语,分为10大类:1.基础概念(AI、ML、DL等);2.模型算法(神经网络、Transformer等);3.NLP技术(分词、BERT等);4.CV技术(目标检测、OCR等);5.数据处理(特征工程、数据增强等);6.评估指标(准确率、F1等);7.工具框架(TensorFlow、PyTorch等);8.伦理责任(算法偏见、隐私保护等);9.工程部署(MLOps、边缘计算等);10.产品运营(用户旅程、A/B测试等)。这些术语覆盖了AI技术全栈,适合快速查阅参考。

2025-05-25 16:30:00 1629

原创 产品经理技术篇:必知的模型参数&调优

在深度学习实践中,产品经理虽不直接参与算法开发,但需深入理解模型参数的作用与调优逻辑,以便精准评估模型迭代的技术边界,并在需求对接和资源协调中建立技术共识。本文介绍了超参数、模型训练参数和生成控制参数的概念及其在不同阶段的作用。超参数在训练前设置,影响模型训练效率和性能;模型训练参数在训练过程中调整,影响学习过程和性能;生成控制参数主要用于生成任务的语言模型,影响生成文本的多样性和质量。通过合理设置和调整这些参数,可以优化模型训练效率,提高最终性能,并在生成文本时平衡多样性和连贯性。

2025-05-22 07:30:00 4941 3

原创 AI产品经理认知篇:辨别真假AI需求

区分真AI需求与伪AI需求的核心在于判断问题是否必须依赖机器学习/深度学习技术解决。真AI需求通常涉及复杂规则、动态变化、海量变量或依赖人类经验,如图像识别、自然语言理解等;而伪AI需求则可通过规则引擎或条件判断解决,如订单状态流转、数据格式校验等。技术选型需考虑成本、效率、可解释性和维护成本,避免因滥用AI导致资源浪费或系统复杂度失控。AI并非万能,应优先选择最简单且高效的技术方案,确保商业价值的实现。

2025-05-18 18:40:09 1092

原创 AI产品经理技术篇:轻松掌握AI基础概念的趣味指南

用有趣例子讲解AI基础概念,力求轻松掌握AI技术:训练集、验证集、测试集的使用及划分,机器学习与深度学习的过程及差异。

2025-05-17 11:53:01 1187

原创 AI产品经理:技术、思维与商业的融合之道

本文从技术理解、产品思维、商业洞察的维度来构建AI产品经理所需具备的能力体系,并结合AI产品的特殊性进行针对性学习。从实际工作经验来看,当前的工作大多是在现有流程中简单叠加AI技术,例如自动化文档处理等。这种改良路径本质上属于边际效率优化,难以突破生产力瓶颈。因此,相比于对技术的深入理解,思维方式的快速转变更为关键。颠覆性技术带来的真正价值必须伴随着。

2025-05-10 20:06:02 1253 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除