负数的原码、反码和补码

文章讲述了计算机基于二进制原理存储数据,所有信息用二进制的补码形式表示。正数和0的原码、反码、补码相同,负数的补码是通过原码取反加1得到。补码确保了加法和减法运算的简便性,并且讨论了如何从补码还原负数以及数据运算中可能的溢出情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.计算机的数据存储方式

计算机的工作是基于二进制原理进行的,计算机内部所存储的信息都是用二进制来记录和表示的,而且所有的二进制数据都是以补码的方式存储的。

2.原码、反码和补码(非常熟悉可不看)

众所周知,正数的原码、反码和补码等于它本身

0的原码、补码都为0

+0的反码为0

-0的反码为全1

负数的原码为它本身,反码为符号位不变,其他位取反,补码为反码加1

3.负数的原码、反码、补码

1.1负数在计算机中的存在形式

负数在计算机中都是以补码的形式存在的

比如-5,其对应的8位二进制格式为:(10000101)2

-5的8位二进制反码为:(11111010)2

对于补码,先了解一下什么是负数补码。

上面的-5的8位二进制数(10000101)2中,如果不考虑二进制数的正负号,那么最高位所对应的数值为27=128,除去最高位所对应的数为(00000101)2=5.那么这个5所对应的补码再加上5本身就应该等于128,也就是符号位不变,其他位取反再加1。如果仅仅是原码+反码,那就是127。(0x01111111)

10000101原码
11111010反码
11111011补码
00000101去了符号位的原码
+01111011去了符号位的补码
10000000

从第二个表格可以看出,除了-0以外,其他数的补码不会造成位溢出,因为(去了符号位的原码)+(去了符号位的补码)=(最高位所对应的无符号十进制数),也就是除最高位的补码所对应的十进制数总比最高位所对应的十进制数小。

2.2将补码还原

那么上述的(-5)的补码(11111011)2如何还原成-5呢?

一种最直接的方法是对上述过程的逆操作,即补码-1,除符号位取反,然后进行进制转换运算。

另一种方法是直接通过补码运算。

即(11111011)2=(-2)7+26+25+124+23+0+21+20=(-128)+64+32+16+8+0+2+1=-5

2.3计算机的数据运算

计算机的数据运算全都是以补码加法形式进行的,例如6-5,计算机会转换为6和(-5)的补码加法运算,其实补码通过上述的第二种方法还原就能直接得出原来的数。注:当运算的数据大小超过容纳的位数时,就会造成溢出,此时需要进行溢出处理。

000001106
+11111011-5
00000001
### 负数原码的按位取反运算 对于负数而言,其在计算机内部并不是直接以原码形式存在的,而是采用补码的形式存储。因此,在讨论对二进制负数原码执行按位取反之前,应当先理解从原码补码的过程。 当给定一个负数原码时,比如 `-5` 的八位二进制表示 `1000 0101`(其中最左边的一位代表符号),要对其进行按位取反操作,则需遵循如下流程: - 首先获得该数对应的正数部分的绝对,并将其转换为无符号二进制字符串; - 对此无符号二进制串进行逐位取反得到反码; - 将上述所得反码加一形成最终的补码; 但是题目询问的是针对已经作为假设给出的“负数原码”的直接按位取反处理方式。在这种情况下,可以简单地忽略最高位所携带的意义而仅对其它各位做逻辑非变换即可完成所谓的“取反”。例如,对于 `-5 (1000 0101)` 来说,除了保持首位不变外,其他位置上的比特都被反转了,从而产生了新的序列 `1111 1010`[^2]。 需要注意的是,这种未经调整的操作并不符合实际编程语言中实现的取反行为,因为在真实的计算环境中,通常会涉及到更复杂的编码规则变化,如由补码体系下的数转变为另一个有效范围内的新。 ```java public class Test { public static void main(String[] args) { byte b = -5; String binaryString = Integer.toBinaryString(b & 0xFF); System.out.println("Original Binary: " + String.format("%8s", binaryString).replace(' ', '0')); // Perform bitwise NOT operation on the original value. byte result = (byte)~b; binaryString = Integer.toBinaryString(result & 0xFF); System.out.println("Inverted Binary : " + String.format("%8s", binaryString).replace(' ', '0')); } } ``` 这段Java代码展示了如何打印出原始字节及其经过按位NOT运算后的结果。请注意这里的输出可能看起来像是两个不同的正,这是因为Java自动将有符号类型的负数解释为了较大的无符号整型的一部分。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值