Social-STGCNN: A Social Spatio-Temporal GCNN for Human Trajectory Prediction(CVPR2020)论文阅读笔记
提出了社会时空图卷积神经网络(Social STGCNN),它通过将交互建模为一个图来代替聚合方法的需要。实验结果表明,与以前报道的方法相比,最终位移误差(FDE)提高了20%,平均位移误差(ADE)提高了8.5倍,推理速度提高了48倍。此外,我们的模型数据效率高
原创
2020-03-24 22:33:04 ·
7052 阅读 ·
1 评论