- 博客(11)
- 收藏
- 关注
原创 系统重温Pandas笔记:(十)时序数据
文章目录写在前面一、时序中的基本对象二、时间戳1. Timestamp的构造与属性写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas一、时序中的基本对象时间序列的概念在日常生活中十分常见,但对于一个具体的时序事件而言,可以从多个时间对象的角度来描述。例如2020年9月7日周一早上8点整需要到教室上课,这个课会在当天早上10点结束,其
2021-01-10 23:43:31 755
原创 系统重温Pandas笔记:(九)分类数据
文章目录写在前面一、cat对象1. cat对象的属性写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas一、cat对象1. cat对象的属性在pandas中提供了category类型,使用户能够处理分类类型的变量,将一个普通序列转换成分类变量可以使用astype方法。...
2021-01-07 23:46:30 505
原创 系统重温Pandas笔记:(八)文本数据
文章目录写在前面一、str对象1. str对象的设计意图写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas一、str对象1. str对象的设计意图str对象是定义在Index或Series上的属性,专门用于逐元素处理文本内容,其内部定义了大量方法,因此对一个序列进行文本处理,首先需要获取其str对象。在Python标准库中也有st
2021-01-06 23:50:53 235
原创 系统重温Pandas笔记:(七)缺失数据
文章目录写在前面一、缺失值的统计和删除1. 缺失信息的统计写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas一、缺失值的统计和删除1. 缺失信息的统计缺失数据可以使用isna或isnull(两个函数没有区别)来查看每个单元格是否缺失,结合mean可以计算出每列缺失值的比例:...
2021-01-03 23:49:09 384
原创 系统重温Pandas笔记:Task Special:第一次综合练习
文章目录【任务一】企业收入的多样性【任务二】组队学习信息表的变换【任务三】美国大选投票情况【任务一】企业收入的多样性【题目描述】一个企业的产业收入多样性可以仿照信息熵的概念来定义收入熵指标:解:首先import所需要的包:import numpy as npimport pandas as pd然后读取两张表的数据:df1 = pd.read_csv('company.csv')df2 = pd.read_csv('company_data.csv')对数据做一下清洗,去除含有NA
2021-01-02 14:33:13 279
原创 系统重温Pandas笔记:(六)连接
文章目录写在前面一、关系型连接1. 连接的基本概念2. 值连接写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas一、关系型连接1. 连接的基本概念把两张相关的表按照某一个或某一组键连接起来是一种常见操作,例如学生期末考试各个科目的成绩表按照姓名\color{red}{姓名}姓名和班级\color{red}{班级}班级连接成总的成绩
2020-12-29 23:48:38 665
原创 系统重温Pandas笔记:(五)变形
文章目录写在前面写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas
2020-12-27 00:29:59 495
原创 系统重温Pandas笔记:(四)分组
文章目录写在前面一、分组模式及其对象1. 分组的一般模式写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas一、分组模式及其对象1. 分组的一般模式想要实现分组操作,必须明确三个要素:分组依据\color{#FF0000}{分组依据}分组依据、数据来源\color{#00FF00}{数据来源}数据来源、操作及其返回结果\color{
2020-12-25 23:46:03 593 1
原创 系统重温Pandas笔记:(三)索引
写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas
2020-12-22 23:37:24 631 2
原创 系统重温Pandas笔记:(二)Pandas基础
写在前面本文内容源自Datawhale 组队学习教程,并结合了部分自己的笔记和感悟。对Datawhale感兴趣且想进一步了解:https://github.com/datawhalechina/joyful-pandas在开始学习前,请保证 pandas 的版本号不低于1.1.4,否则请务必升级!一、文件的读取和写入1. 文件读取读取csv, excel, txt:df_csv = pd.read_csv('data/my_csv.csv')df_txt = pd.read_table('d
2020-12-19 23:50:16 585
原创 系统重温Pandas笔记:(一)预备知识
一、Python基础1. 列表推导式与条件赋值法一:定义一个函数,然后调用L = []def my_func(x): return 2*xfor i in range(5): L.append(my_func(i))L[0, 2, 4, 6, 8]法二:(简化法一)利用列表推导式:[* for i in *]:第一个*为映射函数,其输入为后面i指代的内容,第二个*表示迭代的对象。[my_func(i) for i in range(5)][0, 2, 4, 6, 8
2020-12-16 23:17:35 214
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人