题目链接:https://ac.nowcoder.com/acm/contest/887/C
题意:有一片森林,它能阻挡沙尘暴的条件是森林中最高的树的数量大于树总数量的一半。一共有N种树,每种树有三个属性:高度Hi、砍一棵这种树的花费Ci,数量Pi。问在森林能成功阻挡沙尘暴的条件下,砍树的最小花费和是多少。
多组输入 n(1≤n≤1e5) Hi(1≤Hi≤1e9) Ci(1≤Ci≤200) Pi(1≤Pi≤1e9)
思路:用结构体存下每种树的三个属性,按高度从小到大排序【attention:两种树的高度可能相等,预处理出一个总和sum,然后从小到大分别枚举森林中最高的树的高度,比它高的树全都要砍掉,如果它的数量达不到剩余树数量的1/2以上,则还需要砍掉一些矮一点的树,每次都算出当前高度下的最小花费和,取这些的最小值即可。
下面是AC代码:
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL inf=1e18;
const int maxx=1e5+10;
int n;
LL cost[205];
struct node
{
LL p,h,c;
}t[maxx];
bool cmp(node x,node y)
{
return x.h<y.h;
}
int main()
{
while(~scanf("%d",&n))
{
memset(cost,0,sizeof(cost));
LL sum=0,q;
for(int i=1;i<=n;i++)
{
scanf("%lld%lld%lld",&t[i].h,&t[i].c,&t[i].p);
sum+=t[i].p*t[i].c;
}
sort(t+1,t+1+n,cmp);
LL num,cnt=0,y;
LL ans=inf,mm;
for(int i=1;i<=n;i++)
{
num=0,q=t[i].h,y=i;
while(t[i].h==q)
{
sum-=t[i].p*t[i].c;
num+=t[i].p;
i++;
}
i--,mm=sum;
LL sub=cnt-num+1;
if(sub>0)
{
for(int j=1;j<=200;j++)
{
if(cost[j]>0)
{
if(cost[j]<sub)
{
sub-=cost[j];
mm+=cost[j]*j;
}
else
{
mm+=sub*j;
sub=0;
break;
}
}
}
}
cnt+=num;
ans=min(ans,mm);
for(int j=y;j<=i;j++)
cost[t[j].c]+=t[j].p;
}
printf("%lld\n",ans);
}
}
容易出错的点:cost 数组要在算完当前高度下的花费后更新,避免砍去最大高度的树;每次枚举都是独立的,上次砍掉的树下一次不一定要砍,所以要定义一个mm来加上砍掉矮树的花费,不能直接用sum。 ^ ^