笔记-数据结构与算法-递归

递归Recursion

  • 视频链接:https://www.bilibili.com/video/BV1VC4y1x7uv
  • 章节:P30-P44

递归是一种解决问题的方法,其精髓在于将:

  1. 问题分解为规模更小的相同问题

  2. 持续分解,直到问题规模小到可以用非常简单直接的方式来解决。

  3. 递归的问题分解方式非常独特,其算法方面的明显特征就是:在算法流程中调用自身。

数列求和

将问题规模较大的列表求和,分解为规模较小而且固定的2个数求和。

基本算术:数列的和=“首个数”+“余下数列”的和。

如果数列包含的数少到只有1个的话,它 的和就是这个数了。

这是规模小到可以做最简单的处理

在这里插入图片描述

  • 代码示例

    def list_sum(alist):
        if len(alist) == 1:
            return alist[0]
        else:
            return alist[0] + list_sum(alist[1:])
    list_sum([1,3,4,7,9])
    
  • 程序执行过程

在这里插入图片描述

递归函数调用和返回过程

递归3定律

  1. 递归算法必须有一个基本结束条件(最小规模问题的直接解决)
  2. 递归算法必须能改变状态向基本结束条件演进(减小问题规模)
  3. 递归算法必须调用自身(解决减小了规模的相同问题)
  • 数列求和问题解析

    基本结束条件:数列长度为1,返回唯一值;

    向基本结束条件演进: 每次数列长度减1;

    调用自身:计算长度减1后的数列之和。

    将问题分解为规模更小的相同问题。

整数进制转换

基本结束条件:当前整数值小于进制基(十进制:数值在0-9之间);

改变状态向基本条件演进:整数值//进制基数值变小,获取余数;

调用自身:对整数值//进制基的商再进一步求商求余。

  • 图表示例
    在这里插入图片描述

  • 代码实现

def to_str(n, base):
    covert_string = "0123456789abcdef"
    if n < base:
        return covert_string[n]	# 最小规模
    else:
        return to_str(n // base, base) + covert_string[n % base] # 调用自身

递归调用的实现

当一个函数被凋用的时候,系統会把凋用时的现场数据压入到系统调用栈
每次调用,压入栈的现场数据称为栈帧,当函数返回时,要从调用栈的栈顶取得返回地址 ,恢复现场,弹出栈帧,按地址返回。

现场数据包括返回函数名称,函数的参数,局部变量等

在这里插入图片描述

  • 递归深度限制
    在调试递归算法程序的时候经常会碰到这样的错误:RecursionError
    • 递归的层数太多,系统调用栈容量有限。

    • 在Python内置的sys模块可以获取和调整最大递归深度

      import sys
      
      print(sys.getrecursionlimit())
      sys.setrecursionlimit(3000)
      print(sys.getrecursionlimit())
      

递归可视化

  • 自相似

“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。

自然界这个的分形性质的物体,海岸线、山脉、闪电、云朵、雪花、树

在这里插入图片描述

  • 分形树

    一棵树的每个分叉和每条树枝,实际上都具有整棵树的外形特征(也是逐步分叉的)。

在这里插入图片描述

可以把树分解为三个部分:树干、左边的小树、右边的小树。分解后,正好符合递归的定义:对自身的调用。
在这里插入图片描述

  • 谢尔宾斯基三角形
    分形构造,平面称谢尔宾斯基三角形,立体称谢尔宾斯基金字塔。
    在这里插入图片描述

作图思路
degree有限的情况下,degree=n的三角形,是由3个degree=n-1的三角形 按照品字形拼叠而成
同时,这3个degree=n-1的三角形边长均为 degree=n的三角形的一半(规模减小)。
degree=0,则就是一个等边三角形,这是递归基本结束条件。
在这里插入图片描述

汉诺塔

在这里插入图片描述

  • 问题分析
    假设有5个盘子,穿在1#柱,需要挪到3#柱,
    1. 如果能有办法把最上面的一摞4个盘子统统挪到2#柱,那问题就好解决了,
    2. 把剩下的最大号盘子直接从1#柱挪到3#柱,
    3. 再用同样的办法把2#柱上的那一摞4个盘子挪到3#柱,

这样就只需3步就完成了整个移动。问题是如何将4个盘子如何能从1# 挪到2#?(此时问题规模减小了)
同样是想办法把上面的3个盘子到3#柱, 把剩下最大号盘子从1#2#柱,再用同样的方法把3个盘子从3#2#柱子
照此,3个盘子,2个盘子都能移动。再分解就是1个盘子的移动了。

  • 递归思路

    • 将盘片塔从开始柱,经由中间柱,移动到目标柱:
      1. 首先将上层N-1个盘片的盘片塔,从开始柱,经由目标柱,移动到中间柱;
      2. 然后将第N个(最大的)盘片,从开始柱移动到目标柱
      3. 最后将放置在中间柱N-1个盘片的盘片塔,经由开始柱,移动到目标柱
    • 基本结束条件就是最小规模问题,即一个盘片的移动问题。
  • 代码实现

    def move_tower(height, from_tower, with_tower, to_tower):
        """
        :param height: 盘片高度,自上而下的序号
        :param from_tower: 开始柱
        :param with_tower: 中间柱
        :param to_tower: 目标柱
        :return: 
        """
        if height > 0:
            move_tower(height - 1, from_tower, to_tower, with_tower)
            # 打印盘片移动记录
            print(f"移动{height},从{from_tower}{to_tower}")
            move_tower(height - 1, with_tower, from_tower, to_tower)
    move_tower(3, "一", "二", "三")
    

探索迷宫

  • 目的

    将海龟放在迷宫中间,如何能找到出口

  • 迷宫结构

    整个迷宫的空间(矩形)分为行列整齐的方格,区分出“墙壁“和”通道“。 给每个方格具有行列位置,并赋予“墙壁”、“ 通道”的属性。

在这里插入图片描述

  • 迷宫的数据结构

    采用“数据项为字符列表的列表”这种两列表的方式来保存方格内容;

    采用不同字符来分别代表“墻壁+”、“通道 ”、“海色投放点S”

    从一个文本文件逐行读入迷宫数据

  • 迷宫探索

    对于海龟来说,其身处某个方格之中它所能移动的方向,必须是向着通道的方向,如果某个方向是墙壁方格,就要换一个方向移动。
    在这里插入图片描述

    • 基本探索步骤

      • 将海龟从原位置向移动一步,以新位置递归调用探索迷宫寻找出口;
      • 如果上面的步骤找不到出口,那么将海龟从原位 置向移动一步,以新位置递归调用探索迷宫;
      • 如果向南还找不到出口,那么将海龟从原位置向西移动一步,以新位置递归调用探索迷宫;
      • 如果向西还找不到出口,那么将海龟从原位置向移动一步,以新位置递归调用探索迷宫;
      • 如果上面四个方向都找不到出口,那么这个迷宫没有出口!
    • 记录已探索位置

      如果我们向某个方向(如北)移动了海龟,那么如果新位置的北正好是一堵墙壁,那么在新位置上的递归调用就会让海龟向南尝试,可是新位置的南边一格,正好就是递归调用之前的原位置,这样就陷入了无限递归的死循环

      在这里插入图片描述

      • 面包屑

        需要有个机制海龟所走的路径,沿途洒“面包屑”,一旦前方向发现“面包屑 ”,就不能再上去,而必須换下一个方向尝试,对于递归调用来说,就是某方向的方格上发现“ 面包屑”,就立即从递归调用返回上一級。

        在这里插入图片描述

    • 递归基本结束条件

      1. 海龟碰到“墙壁”方格,递归调用结束,返回失败;
      2. 海龟碰到“面包屑”方格,表示此方格已访问过 ,递归调用结束,返回失败;
      3. 海龟碰到“出口”方格,即“位于边缘的通道” 方格,递归调用结束,返回成功!
      4. 海龟在四个方向上探索都失败,递归调用结束, 返回失败
    • 代码实现

    OBSTACLE = '墙壁'
    TRIED = '面包屑'
    DEAD_END = '死胡同'
    PART_OF_PATH = '探索成功'
    
    def is_exit(row, col):
    	# 出口
        pass
    
    def search_from(maze, start_row, start_column):
        # 墙壁
        if maze[start_row, start_column] == OBSTACLE:
            return False
        # 面包屑
        if maze[start_row, start_column] == TRIED:
            return False
        # 死胡同
        if maze[start_row, start_column] == DEAD_END:
            return False
        # 出口
        if is_exit(start_row, start_column):
            return True
        # 北南西东4个方向依次探索
        found = search_from(maze, start_row - 1, start_column) or \
                search_from(maze, start_row + 1, start_column) or \
                search_from(maze, start_row, start_column - 1) or \
                search_from(maze, start_row, start_column + 1)
        # 探索完成,标记当前点,失败标记死胡同
        if found:
            maze[start_row, start_column] = PART_OF_PATH
        else:
            maze[start_row, start_column] = DEAD_END
        return found
    

    分治策略

将问题分为若干更小规模的部分,通过解决每一个小规模部分问题,并将结果汇总得到原问题的解。
在这里插入图片描述

  • 递归算法与分治策略

    • 递归3定律,
      • 基本结束条件,解决最小规模问题
      • 缩小规模,向基本结束条件演进
      • 调用自身来解决已缩小规模的相同问题
    • 体现了分治策略,问题解决依赖于若干缩小了规模的问题,汇总得到原问题的解。

    递归算法与分治策略有天然的联系,应用广泛:排序、查找、遍历、求值等等

优化问题

计算机科学中许多算法都是为了找到某些问题的最优解例如,两个点之间的最短路径;能最好匹配一系列点的直线;或者满足一定条件的最小集合。
在这里插入图片描述

找零问题

兑换最少个数的硬币问题。
假设你为一家自动售货机厂家编程序,自动售货机要每次找给顾客最少数量硬币;假设某次顾客投进$1纸币,买了37分的东西,要找63分,那么最少数量就是:2个quarter(25)、1个dime(10)和3个penny(1),一共6个硬币。
在这里插入图片描述

贪心策略

从最大面值的硬币开始,用尽量多的数量,有余额,再到下一最大面值的硬币,还用尽量多的数量,一直到penny(1)为止。每次都试图解决问题的尽量大的一部分,对应到兑换硬币问题,就是每次以最多数量的最 大面值硬币来迅速减少找零面值。
在这里插入图片描述

  • 贪心策略失效

    假设存在面值21分的硬币,按照“贪心策略”,63分还是原来的6个硬币63= 25 * 2 +10 * 1+1 * 3
    但实际上最优解是3个面值21的硬币! 63=21*3。“贪心策略”失效了。

递归算法
  • 基本结束条件
    兑换硬币这个问题最简单直接的情况就是,需要兑换的找零,其面值正好等于某种硬币,如找零25分,答案就是1个。

  • 减小问题规模
    我们要对每种硬币尝试1次,例如美元硬币体系:

    • 找零减去1分(penny)后,求剩余零钱兑换硬币最少数量(递归调用自身);
    • 找零减去5分(nikel)后,求剩余零钱兑换硬币最少数量;
    • 找零减去10分(dime)后,求剩余零钱兑换硬币最少数量;
    • 找零减去25分(quarter)后,求剩余零钱兑换硬币最少数量上述4项中选择最小的一个。

在这里插入图片描述

  • 代码实现

    def rec_mc(coin_value_list, change):
        """
        :param coin_value_list: 硬币体系
        :param change: 找零数额
        :return:
        """
        # 最小硬币数初始化
        min_coins = change
        #  最小规模,直接返回
        if change in coin_value_list:
            return 1
        else:
            # 筛选小于当前面额的硬币列表,用于遍历
            for i in [c for c in coin_value_list if c <= change]:
                # 硬币数量+1,递归调用,传入金额减去一个硬币后的值(减少规模)
                num_coins = 1 + rec_mc(coin_value_list, change - i)
                # 获取最小数量
                if num_coins < min_coins:
                    min_coins = num_coins
        return min_coins
    
  • 算法分析

    此方法极其低效

    对63分的兑换硬币问题,需要进行67,716,925 次递归调用,耗时32s。

    原因:重复计算非常多,对同一个面额,在不同的路线下都会进行相同的计算(比如,63—>53,可以通过2次5,或者10次1达到,2种分支下,53都要进行重复的递归计算)。

  • 算法优化

    想办法消除重复计算,可以用一个表将中间过程的部分找零的最优解记录下来。在递归调用之前,先查找表中是否已有部分找零的最优解,如果有直接返回最优解而不是进行递归调用。

    这种方法叫作记忆化/函数值缓存的技术,提高了递归解法的性能。

    比如一种路径中已经得到53分的最优解,那当另一个路线也剩余53分时,可以直接获取结果。而不用重复计算。

  • 优化后的代码

    def rec_mc2(coin_value_list, change, known_result):
        """
        增加已知最优解记录表
        :param coin_value_list: 硬币体系
        :param change: 找零数额
        :param known_result: 已知找零的最优解记录表,字典类型
        :return:
        """
        # 最小硬币数初始化
        min_coins = change
        #  最小规模,直接返回
        if change in coin_value_list:
            return 1
        # 当前面额存在最优解直接返回
        if change in known_result:
            return known_result[change]
        else:
            # 筛选小于当前面额的硬币列表,用于遍历
            for i in [c for c in coin_value_list if c <= change]:
                # 硬币数量+1,递归调用,传入金额减去一个硬币后的值(减少规模)
                num_coins = 1 + rec_mc2(coin_value_list, change - i, known_result)
                # 获取最小数量
                if num_coins < min_coins:
                    min_coins = num_coins
            # 录入当前面额最优解
            known_result[change] = min_coins
        return min_coins
    
  • 结果对比

    6
    32.35688495635986
    6
    0.0009965896606445312
    

动态规划

  • 主要思想

    从最简单情况开始到达所需情况的循环,其每一步都依靠以前的最优解来得到本步骤的最优解,直到得到答案。

动态规划找零兑换

  • 步骤
    1. 从最简单的1开始找零的最优解开始,逐步递加上去,直到我们需要的找零钱数;
    2. 在找零递加的过程中,设法保持每一分钱的递加都是最优解,一直加到求解找零钱的数,自然为最优解;
    3. 递加的过程能保持最优解的关键是,其依赖于更少钱数最优解的简单计算,而更少钱的最优解已经得到;
    4. 问题最优解包含了更小规模子问题最优解,这是一个最优化问题能够用动态规划策略解决的必要条件。
      在这里插入图片描述

originalamount:找零面额
1+numCoins(originalamount -1)originalamount-1的最优解+1个硬币

从1、5、10、25 四种硬币为最后1个硬币的4种更小规模子问题的最优解+1结果中获取当前面额的最优解。

  • 示例

    动态规划解决11分钱的兑换问题,从1分钱兑换开始,逐步建立一个兑换表。

在这里插入图片描述

1分钱1个,2分2个,3分3个,4分4个,5分1个(5分硬币),6分2个(1个1,1个5)…
计算11分钱的兑换法,我们做如下几步:

  • 首先减去1分硬币,剩下10分钱查表最优解是1 (10分硬币)

  • 然后减去5分硬币,剩下6分钱查表最优解是2 (1个1,1个5)

  • 最后减去10分硬币,剩下1分钱查表最优解是1(1分硬币)

  • 所以11分钱兑换的最优解是2个硬币(1+10、10+1)

  • 找零兑换代码实现

    def coin_change(n):
        min_list = (num + 1) * [0]  # 用于保持子问题最优解
        base_list = [1, 2, 5, 10, 20, 21, 50] # 硬币种类
        for i in range(n + 1):  # 列表,左闭右开,需要+1
            if i in base_list:  # 零钱数和兑换基值相同是最优解1
                min_list[i] = 1  # 保持值列表中
                continue
            min_count = i		# 初始化数量
            for base in base_list:  # 遍历所有兑换基值
                if i - base > 0:  # 使用小于零钱的基值
                    count1 = min_list[i - base]  # 当前值减一次基值,查询最优解表,获取子问题最优解
                    if count1 < min_count:
                        min_count = count1  # 求最优解中的最优解
            min_list[i] = min_count + 1  # 子问题最优解+1的到当前值的最优解,+1对应 20减一次base
        return min_list[-1]  # 返回最后一个值为目标值
    num = 63
    print(coin_change(num))
    

博物馆大盗问题

大盗潜入博物馆,面前有5件宝物,分别有重量和价值,大盗的背包仅能负重20公斤,请问如何选择宝物,总价值最高?

itemweightvalue
123
234
348
458
5910
  • 建模:核心是尽可能的达到最大负重,提供重量/价值比:

    • 相同重量不同物品搭配不同,选择高性价比;
    • 相同物品不同重量搭配不同,选择高价值,2个制约,画2个函数图,取较大值。
  • 制约条件

    • 重量,必须计算小重量值时的最优解,大重量的最优解任何依赖小重量推导出
    • 物品数量
  • 创建函数关系m(i,W)

    i (1<=i<=5)个宝物中,组合不超过 W (1<=W<=20)重量,得到的最大价值 m(i, W)

  1. m(i-1, W),重量不变,第i个宝贝的性价比低,不添加第i件宝贝,i-1件宝贝在W重量下的最优值。(在Wi大于W时,必定是这种情况)

  2. m(i-1, W-Wi)+vi,添加第i件宝贝,i-1件宝贝在W-Wi重量下的最优值再加上第i件宝贝价值vi

    两者最大值,我们从m(1,1)开始计算到m(5,20)
    在这里插入图片描述

  • 推演过程
    两个方向嵌套循环,递推表格

在这里插入图片描述
m(5,5) = m(4,5) = max(m(3,5),m(3,0)+8)
宝贝5个,重量5,第5个宝贝重量为9大于W(5),一定不会添加,所以等价于m(4,5)
m(4,5)m(3,5) 和 m(3,5[W]-5(w4)+8) 之间的最大值,都为8,所以m(5,5)等于8。
所以后面的价值依赖于前面的最优解。
表格数值依赖自身位置的上边和左边值,这些值是已经计算出来了。

  • 代码实现

    # 宝物重量和价值
    tr = [None, {'w': 2, 'v': 3}, {'w': 3, 'v': 4},
          {'w': 4, 'v': 8}, {'w': 5, 'v': 8},
          {'w': 9, 'v': 10}]
    # 最大负重
    max_w = 20
    # 初始化二维表格m[(i,w)]
    # 表示前i个宝贝中,最大重量w的组合,所得到的最大价值
    # 当i 什么都不取,或w上限为0,价值为0
    m = {(i, w): 0 for i in range(len(tr)) for w in range(max_w + 1)}
    print(m)
    # 逐个填写二维表格
    for i in range(1, len(tr)):
        for w in range(1, max_w + 1):
            if tr[i]['w'] > w:	# 装不下第i个宝物
                m[(i, w)] = m[(i - 1, w)]
            else:
                print('=======================')
                print(f"m[({i} - 1, {w})] ,{m[(i - 1, w)]}")
                print(f"m[({i} - 1, {w} - {tr[i]['w']})] + {tr[i]['v']} ,{m[(i - 1, w - tr[i]['w'])] + tr[i]['v']}")
                # 不装第i个宝物和装第i个宝物,两种情况的较大值
                m[(i, w)] = max(m[(i - 1, w)], m[(i - 1, w - tr[i]['w'])] + tr[i]['v'])
    
    print(m[(5, 20)])
    
  • 另一种思路步骤

    1. 规模增大,递增遍历,a、宝贝种类 b、重量总数,为什么会选择宝贝种类呢,因为价值和重量同时关联宝贝,所以递增宝贝种类;
    2. 随着宝贝种类增加,在重量不变时,需要添加value/weight高的宝贝,如果新增宝贝比例没有小序号的高时,不用拿新的,那就是选择m(i-1,w)的场景;
    3. 随着重量的增加,可以带走更大重量的产品,如果都选择低重量的产品导致有重量大量剩余的情况,那选择m(i-1,w-wi)+vi
    tr2 = [{'w': 2, 'v': 3}, {'w': 3, 'v': 4},
           {'w': 4, 'v': 8}, {'w': 5, 'v': 8},
           {'w': 9, 'v': 10}]
    max_v = 0
    for i in range(len(tr2)):
        for j in range(i + 1, len(tr2)):
            v = tr2[i]['v'] + tr2[j]['v']
            if v > max_v:
                max_v = v
    
  • 递归实现
    假设已经拿了5个宝物,重量超过20,去除哪些宝物后,重量小于等于20,并且剩余物品的最大值。

    tr2 = [(2, 3), (3, 4,), (4, 8), (5, 8,), (9, 10)]
    max_w = 20
    
    # 初始化记忆化表格m,减少重复计算
    # key是(宝物组合,最大重量),value是最大价值
    m = {}
    def thief(tr, w):
        if tr == set() or w == 0:
            m[(tuple(tr), w)] = 0  # 键值为不可变类型
            return 0
        elif (tuple(tr), w) in m:
            return m[(tuple(tr), w)]
        else:
            v_max = 0
            for t in tr:
                if t[0] <= w:
                    # 逐个从集合中去掉某个宝物,递归调用
                    # 选出所以价值中的最大值
                    v = thief(set(tr) - {t}, w - t[0]) + t[1]
                    v_max = max(v_max, v)
            m[(tuple(tr), w)] = v_max
            return v_max
    
    print(thief(tr2, max_w))
    

递归算法总结

适用场景:递归是解决某些具有自相似性的复杂问题的有效技术。

递归算法“三定律”:必须具备基本结束条件;必须要减小规模,改变状态向基本结束条件演进;必须要调用自身。

某些情况下,递归可以代替迭代循环。

递归算法通常能够跟问题的表达自然契合,有时候递归算法会引发巨量的重复计算,可以使用“记忆化/函数值缓存”技术,通过附加存储空间记录中间计算结果来有效减少重复计算。

如果一个问题最优解包括规模更小相同问题的最优解,就可以用动态规划来解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值