变量类型
工程变量和设计变量的区别:工程变量工作区间为该工程下所有设计文件,设计变量的工作区间仅为该设计文件。两者用符号$做前缀进行区分,工程变量名称前有符号$,设计变量名称无符号$。
Optimetrics模块
具有参数扫描(Parametric)、优化设计(Optimization)、调谐分析(Tuning)、灵敏度分析(Sensitivity)、统计分析(Statistical)等功能。
调谐分析:在改变变量值的同时实时显示求解结果;
灵敏度分析:分析设计参数的微小变化对求解结果的影响程度;
统计分析:利用统计学的观点(如蒙特卡洛法)来研究设计参数的容差对求解结果的影响;
先添加优化变量,然后构造目标函数。对于复杂的目标函数,可以先定义输出变量(Output Variables),然后使用定义的输出变量来构造目标函数。当有多个目标函数时,可以给每个目标函数分配一个加权值,加权值越大,表示该目标函数越重要;
误差函数值是目标函数误差值的加权和,有L1、L2和Maximum三种。
当目标函数的值小于或等于优化阈值时,优化分析完成。该阈值可以是一个复数。
当使用有限元法分析电磁问题时,网格剖分的部分会给目标函数引入各种噪声,当使用拟牛顿优化算法和模式搜索优化算法时,需提供噪声的估算值,以评估求解过程中网格的变化对目标函数的影响。
非线性顺序编程算法(Sequential Nonlinear Progra mming, SNLP);
混合整数非线性顺序编程算法(Sequential Mixed-Integer Nonlinera Progra mming, SMINLP);
拟牛顿法(Quasi-Newton);
模式搜索法(Pattern Search);
遗传算法(Genetic Algorithm);
拟牛顿法:在极小点附近通过对目标函数做二阶泰勒展开,进而找到目标函数的极小点的估计值。只有在目标函数的噪声很小的情况下是准确的,若目标函数的噪声在工程是显著的,需使用模式搜索算法;
模式搜索法:不用目标函数与约束函数的导师信息,只使用函数信息,是求解不可导或求导代价较大的最优化问题的一种有效算法。对于目标函数的噪声不敏感;
SNLP: 与拟牛顿法相似,适合解决目标函数的噪声较小的问题,而且该算法引入噪声滤波,可以适当降低噪声的影响,比拟牛顿法更快收敛,且运行使用非线性约束,比拟牛顿法和模式搜索法具有更广阔的使用范围。该算法推荐使用。
SMINLP:能优化具有连续变量和整数变量的问题,与SNLP相似。
遗传算法:运用随机而非确定性的规则对一族而非一个点进行全局而非局部的搜索,仅使用目标韩式而不要求其导数信息或其他附加限制。效率高于传统随机算法,普遍使用。