视频对象分割笔记
文章平均质量分 69
ling零零零
初涉人工智能领域的准研究生一枚,欢迎多多探讨,共同进步!
展开
-
深度学习之python使用指定gpu运行代码
运行python文件时,在前面加上 CUDA_VISIBLE_DEVICES=xxx,xxx是你要指定的gpu序号。如`CUDA_VISIBLE_DEVICES=0,2 python extract_masks.py`表示指定了0、2号两个gpu。注意,序号是从0开始排的,所以如果你只有一个gpu,那么就是`CUDA_VISIBLE_DEVICES=0 python extract_masks.py`原创 2023-06-11 23:38:22 · 10038 阅读 · 2 评论 -
深度学习之Pytorch中的flatten()、transpose()和permute()
flatten():压缩维度;transpose():转置(两个维度);permute():按照指定维度排列进行转置(多个维度)原创 2022-11-14 19:28:31 · 3168 阅读 · 1 评论 -
对比学习综述:Contrastive Representation Learning: A Framework and Review(2020)论文地址附文末↓
本文主要概括了20年这篇对比学习综述所讲的几个方面:对比表示学习的概念及示例,对比学习中的分类【对比表示学习框架、相似性分类(多感官信号、数据变换、上下文实例关系、序列一致性、自然聚类)、编码器分类、变换头transform heads分类、对比损失函数分类(评分函数、基于能量的利益损失、基于概率的损失、基于互信息的损失)】,在视觉任务中的应用,作者提出的一些讨论原创 2022-10-08 21:12:57 · 3020 阅读 · 0 评论 -
2022WACV论文:D2Conv3D的梳理及2D/3DCNN、可变形卷积等关键词解释
以PPT的形式,论文关键点梳理+关键名词解释原创 2022-05-09 11:11:27 · 756 阅读 · 0 评论 -
pytorch神经网络训练及测试流程&代码
神经网络的训练及测试其实是个相对固定的流程,下面进行详细说明,包括命令行设置基本参数、如数据集路径等其他参数的设置、学习率、损失函数、模型参数的保存与加载及最终train.py与test.py的main()函数写法原创 2022-04-25 20:39:18 · 14909 阅读 · 0 评论 -
利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN)
利用图神经网络(GNN)的视频/图像分割模型总结,包括对应论文引用示例、模型示意图、主要参数解释及计算、三种模型的相同与不同点对比。原创 2022-02-17 11:17:21 · 4773 阅读 · 0 评论 -
视频对象分割方法(可用作实验对比):FST,FSEG,SFL,LVO,ARP
视频对象分割方法(可用作实验对比):FST,FSEG,SFL,LVO,ARP1、FST(ICCV2013: Fast object segmentation in unconstrained video)两个主要阶段:(1)Efficient initial foreground estimation有效的初始前景估计(2)Foreground-background labelling refinement前景-背景标签细化官方代码链接:http://groups.inf.ed.ac.uk/ca原创 2021-09-22 12:04:57 · 600 阅读 · 0 评论