完全重建QMF滤波器组及MATLAB实现

正交镜像滤波器组(QMFB)

两通道正交镜像滤波器组(QMFB,Quadrature Mirror Filter Banks)是基于多抽样率技术的滤波系统,一个QMFB可以用如下的流程图表示:
在这里插入图片描述
在分析滤波器一侧,输入信号(设为宽带信号)被分为k个子带信号(窄带信号),对子带信号进行抽取,以降低采样率;在综合滤波器一侧,经过零值内插和带通滤波可以重建原来的信号。

若重建的信号 X ′ ( n T ) X'(nT) X(nT) 与输入信号 X ( n T ) X(nT) X(nT) 满足以下关系:

X ′ ( n T ) = c X [ ( n − n o ) T ] X'(nT)=cX[(n-n_o)T] X(nT)=cX[(nno)T]
其中 c c c n o n_o no 均为常数,即满足重建的信号为输入信号的时延,二者只在幅度上相差 c c c 倍,便可称为完全重建的QMFB

要减小信号经过滤波器组所产生的误差,消除混叠失真的一种方法为:

F 0 ( z ) = H 0 ( z ) F 1 ( z ) = − H 1 ( z ) F_0(z)=H_0(z)\\\\F_1(z)=-H_1(z) F0(z=H0(z)F1(z=H1(z)

当分析滤波器组满足:
H 1 ( z ) = H 0 ( − z ) H_1(z)=H_0(-z) H1(z=H0(z)
该滤波器便称为正交镜像滤波器组,其幅频特性有:
H 1 ( e j w ) = H 0 ( e j ( w − π ) ) H_1(e^{jw})=H_0(e^{j(w-\pi)}) H1(ejw=H0(ej(wπ))
在这里插入图片描述
可以看出 H 1 ( e j w ) H_1(e^{jw}) H1(ejw H 0 ( e j w ) H_0(e^{jw}) H0(ejw 关于 w = π 2 w=\frac{\pi}{2} w=2π镜像对称,这便是QMFB的名称由来。

所以在QMFB系统中,分析滤波器与综合滤波器均由 H 0 ( z ) H_0(z) H0(z 决定,若 H 0 ( z ) H_0(z) H0(z 为低通滤波器,则 H 1 ( z ) H_1(z) H1(z G 0 ( z ) G_0(z) G0(z G 1 ( z ) G_1(z) G1(z 分别为高通、低通、高通滤波器。

MABLAB实现完全重建QMFB

对于完全重建QMFB的MATLAB实现,所需要得到的参数有:

  • 各滤波器的阶数N,N必须为奇数
  • 滤波器 H 0 H_0 H0 的通带截止频率 w w w, w w w 需小于0.5以减小误差

为了得到最佳参数,先选定 w w w ,对于不同的输入信号 ,改变N,求出均方误差MSE,通过比较得到最优的N值;其次,固定N,对于不同的输入信号 ,改变 w w w 的大小求出mse,通过比较得到最优的 w w w 值。

经过实验得出,最佳的N=41,最佳的 w w w=0.43
MATLAB代码如下:

N=41;
w=0.43;
[h0,h1,g0,g1]=firpr2chfb(N,w);
[H1z,w]=freqz(h0,1,512);
H1_abs=abs(H1z);H1_db=20*log10(H1_abs);
[H2z,w]=freqz(h1,1,512);
H2_abs=abs(H2z);H2_db=20*log10(H2_abs);
%%%%%%%%%%滤波器h0和h1的幅度响应%%%%%%%%%%
figure(1); 
plot(w/pi,H1_db,'-',w/pi,H2_db,'--'); 
axis([0,1,-100,10]); 
grid 
xlabel('\omega/\pi');ylabel('幅度,dB'); 
sum1=H1_abs.*H1_abs+H2_abs.*H2_abs; 
d=10*log10(sum1);
%%%%%%%%%%%%幅度响应关系误差%%%%%%%%%%%%%
figure(2) 
plot(w/pi,d);grid; 
xlabel('\omega/\pi');ylabel('误差,dB'); 
axis([0,1,-0.04,0.04]); 
%%%%%%%%%%%%%x1(n)%%%%%%%%%%%%%%%%%%%%%
x=zeros(1,500);
x(2)=1;x(3)=1;
x(6)=2;x(7)=2;x(8)=2;
x(17)=1.5;x(18)=1.5;x(19)=1.5;
x(24)=1;x(25)=1;
x(33)=3;x(34)=3;x(35)=3;
%%%%%%%%%%%%%%x2(n)%%%%%%%%%%%%%%%%%%%%
x=zeros(1,500);
x(1)=1;x(2)=1;x(3)=1;
x(9)=2;x(10)=2;x(11)=2;
x(16)=3;x(17)=3;x(18)=3;
x(24)=4;x(25)=4;x(26)=4;
x(33)=3;x(34)=3;x(35)=3;
x(41)=2;x(42)=2;x(43)=2;
x(49)=1;x(50)=1;x(51)=1;
%%%%%%%%%%%%%%x3(n)%%%%%%%%%%%%%%%%%%%%
n=1:500;
T=0.2;
x=sin(n*T);
hlp=mfilt.firdecim(2,h0);
hhp=mfilt.firdecim(2,h1);
glp=mfilt.firinterp(2,g0);
ghp=mfilt.firinterp(2,g1);
x0=filter(hlp,x);
x0=filter(glp,x0);
x1=filter(hhp,x);
x1=filter(ghp,x1);
xidle=x0+x1;
xshift=[zeros(1,N) x(1:end-N)];
e=xidle-xshift;
mes=sum(abs(e).^2)/length(e)
fvtool(h0)
%%%%%%%%%%%%输入信号%%%%%%%%%%%%%%%%%%
figure(4);
plot(x);
%%%%%%%%%%理想输出信号与重建输出信号%%%%%%%
figure(5);
plot(xshift,'r');hold on;
plot(xidle,'-');
%%%%%%%理想输出信号与重建输出信号的偏差%%%%%%
figure(6);
plot(xshift-xidle);

结果分析:
1、 H 0 ( z ) H_0(z) H0(z H 1 ( z ) H_1(z) H1(z 的幅度响应:

在这里插入图片描述
从幅频响应也可以看出两个滤波器的镜像关系

2、幅度响应关系误差

理论公式为: ∣ H 1 ( e j w ) ∣ 2 + ∣ H 0 ( e j ( w − π ) ) ∣ 2 ≈ 1 |H_1(e^{jw})|^2+|H_0(e^{j(w-\pi)})|^2≈1 H1(ejw)2+H0(ej(wπ))21 10 l o g ∣ H 1 ( e j w ) ∣ 2 + ∣ H 0 ( e j ( w − π ) ) ∣ 2 ≈ 0 10log|H_1(e^{jw})|^2+|H_0(e^{j(w-\pi)})|^2≈0 10logH1(ejw)2+H0(ej(wπ))20

在这里插入图片描述

从结果可以看出,重建后的误差几乎为0,在 w = π 2 w=\frac{\pi}{2} w=2π 处有少量凸起,但也非常小,可以忽略不计。

3、输入信号图像与重建信号图像

在这里插入图片描述
图左为输入信号图像,图右为重建的信号图像,可以看出二者几乎没有差别,仅有部分时延,符合理论上的完全重建条件。

4、理想输出信号与重建输出信号的偏差

在这里插入图片描述
两个信号的误偏差值非常小。

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值