104.二叉树的最大深度
1、题目
给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
题目链接:https://leetcode.cn/problems/maximum-depth-of-binary-tree/
2、代码`
class Solution {
public:
int getDepth(TreeNode* cur){
if(cur == nullptr) return 0;
int depth_l = getDepth(cur -> left);
int depth_r = getDepth(cur -> right);
return max(depth_l, depth_r) + 1;
}
int maxDepth(TreeNode* root) {
int maxdepth = getDepth(root);
return maxdepth;
}
};
3、小结
使用递归法求二叉树的深度,采用后序遍历来计算根节点的高度。若输入的结点为空,就返回高度为0,否则计算该结点的左、右孩子的高度,取最大值加1就为该结点的高度。最后根结点的高度就为整个二叉树的深度。同样该题还可以使用前序遍历的递归法求解,以及层次遍历的迭代法求解。
559.n叉树的最大深度
1、题目
给定一个 N 叉树,找到其最大深度。最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔。
题目链接:https://leetcode.cn/problems/maximum-depth-of-n-ary-tree/
2、代码`
class Solution {
public:
int maxDepth(Node* root) {
queue<Node*> que;
if (root != NULL) que.push(root);
int depth = 0;
while (!que.empty()) {
int size = que.size();
depth++; // 记录深度
for (int i = 0; i < size; i++) {
Node* node = que.front();
que.pop();
for (int j = 0; j < node->children.size(); j++) {
if (node->children[j]) que.push(node->children[j]);
}
}
}
return depth;
}
};
3、小结
使用层次遍历,每遍历一层就深度加1,最后遍历结束就可以得到该n叉树的最大深度。
111.二叉树的最小深度
1、题目
给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
题目链接:https://leetcode.cn/problems/minimum-depth-of-binary-tree/
2、代码`
class Solution {
public:
//递归-后序
int getdepth(TreeNode* cur){
if(cur == nullptr) return 0;
int depth_l = getdepth(cur -> left);
int depth_r = getdepth(cur -> right);
if(cur -> left == nullptr) return 1 + depth_r;
if(cur -> right == nullptr) return 1 + depth_l;
return 1 + min(depth_l, depth_r);
}
int minDepth(TreeNode* root) {
return getdepth(root);
}
};
3、小结
与求最大高度类似,但需要注意处理当前结点的逻辑与最大高度不同。左右子树都不为空,其高度为左右子树最小高度加1,若其中有一个子树为空,则高度为不为空的子树最小高度加1。最后带入根节点,根节点的最小高度也就等于最小深度。
222.完全二叉树的节点个数
1、题目
给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
题目链接:https://leetcode.cn/problems/count-complete-tree-nodes/
2、代码`
class Solution {
public:
//递归,后序
int getNodeNum(TreeNode* cur){
if(cur == nullptr) return 0;
int leftNum = getNodeNum(cur -> left);
int rightNum = getNodeNum(cur -> right);
return 1 + leftNum + rightNum;
}
int countNodes(TreeNode* root) {
return getNodeNum(root);
}
};
3、小结
使用后序遍历,从底层开始记录,并将子结点数量加1返回父节点以此类推直到根节点。