509. 斐波那契数
1、题目
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
题目链接:https://leetcode.cn/problems/fibonacci-number/
2、代码
class Solution {
public:
//动态规划
int fib(int n) {
if(n <= 1) return n;
//定义dp数组以及初始化
vector<int> dp(n + 1);
dp[0] = 0;
dp[1] = 1;
//遍历顺序
for(int i = 2; i <= n; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
3、小结
在完成动态规划类型题目时,需要确定递推公式,同时在确定递推公式的基础上需要确定dp数组的初始化以及遍历的顺序。该题中已经给出了递推公式以及dp数组的初始化问题,故只需要按照题目要求即可得到。同时该题还可以使用递归法进行求解。
70. 爬楼梯
1、题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
题目链接:https://leetcode.cn/problems/climbing-stairs/
2、代码
class Solution {
public:
int climbStairs(int n) {
if(n <= 2) return n;
int dp[3];
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++){
int sum = dp[1] + dp[2];
dp[1] = dp[2];
dp[2] = sum;
}
return dp[2];
}
};
3、小结
本题的重难点在于找递推公式,在找递推公式的时候不要忘记i所代表的原始含义。爬i层楼梯,可以分别从i-1爬1步到达和从i-2爬两步到达,故i的爬法数量就等于i-1的加上i-2的。在该题中有要求n是大于0的,故i = 0时没必要进行初始化。
746. 使用最小花费爬楼梯
1、题目
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
题目链接:https://leetcode.cn/problems/min-cost-climbing-stairs/
2、代码
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
dp[0] = 0;
dp[1] = 0;
for(int i = 2; i <= cost.size(); i++){
dp[i] = min((dp[i - 1] + cost[i - 1]),(dp[i - 2] + cost[i - 2]));
}
return dp[cost.size()];
}
};
3、小结
第i层楼梯可以从i-1层或者i-2层到达,故第i层的花费为i-1层的花费加上cost[i-1]和i-2层花费加上cost[i-2]中最小值。根据题目可以得知到达0和1层不需要花费,故初始化为0。