实战五:基于Pima印第安人数据——Model_ensemble-example

本文通过Pima印第安人数据集进行糖尿病预测,探讨了三种模型融合方法:投票器模型融合、Bagging、RandomForest和Adaboost。数据包括怀孕次数、葡萄糖、血压等特征,最终目标是预测类标变量(0或1)。
摘要由CSDN通过智能技术生成

数据读取

import pandas as pd  # 数据科学计算工具

data = "pima-indians-diabetes.data.csv"
#年纪、怀孕、血液检查的次数... 匹马印第安人糖尿病的数据集
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
df = pd.read_csv(data, names=names)

【0】Pregnancies:怀孕次数 
【1】Glucose:葡萄糖 
【2】BloodPressure:血压 (mm Hg) 
【3】SkinThickness:皮层厚度 (mm) 
【4】Insulin:胰岛素 2小时血清胰岛素(mu U / ml 
【5】BMI:体重指数 (体重/身高)^2 
【6】DiabetesPedigreeFunction:糖尿病谱系功能 
【7】Age:年龄 (岁) 
【8】Outcome:类标变量 (0或1)

print(df.head())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值