finite field有限域 理解

1.群
(二元)运算:非空集合S,使得S×S映射到S上。
从整数集合的两种运算,可以推广到任意集合的运算。一个代数结构或代数系统是指一个集合和其上的代数运算。
初等算术中有两种运算:加法和乘法;其中两种运算符合结合律是最重要的一条性质。在各种有一个运算符合结合律代数系统中,群是发展和研究最广泛的。群理论是抽象代数中最古老和应用丰富的部分。
1.1群的定义
集合S和定义的二元运算(封闭)满足以下性质:
1)结合律;st,a(bc)=(ab)c
2)有单位元e;st,ae=ea=a
3)任一元有逆元a-1;st,a-1a=aa-1=e
交换群,指运算满足交换律的群。
/容易验证:单位元与逆元唯一确定。
令e1、e都为单位元,e1=e1e=e,即有唯一单位元。
令a‘,a’‘都为元a 的逆元,a"=(a’a)a’‘=a’(aa’‘)=a’,即有唯一单位元。
此外,定义(ab)-1=b-1a-1.
结合律保证, a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an唯一确定。
/
1.2例子
1)整数加群:集合 Z \mathbb {Z} Z,定义运算整数加法
2)单位元群:集合{e},定义运算ee=e;
3)模n的剩余类加群:集合{[0],[1],…,[n-1]} ,定义运算[a]+[b]=[a+b].

这些例子映出了一种有趣的群,每一个元素都是某一个元素的幂方。
1.3循环群的定义
当且仅当群中任一元素是是某一固定元素的幂方。这个固定的元称循环群的生成元,记作群 G = < a > G=<a> G=<a>

1.4同余的定义:congruent
a a a is congruent to b b b modulo n, write a ≡ b mod n a \equiv b \text {mod} n abmodn, 若差 a − b a-b ab n n n的倍数,即 a = b + k n , k ∈ Z a=b+kn,k\in \mathbb{Z} a=b+kn,kZ.

”模n同余“是等价关系,

1.5整数模n的群定义:形如 { [ 0 ] , [ 1 ] , ⋯   , [ n − 1 ] } \{[0],[1],\cdots,[n-1]\} {[0],[1],,[n1]}模n的等价类,在 [ a ] + [ b ] = [ a + b ] [a]+[b]=[a+b] [a]+[b]=[a+b]的运算下。记作 Z n \mathbb Z_n Zn
Z n \mathbb Z_n Zn实际上是一个循环群,等价类 [ 1 ] [1] [1]是生成元,且群的阶为n。

1.6阶的定义:
有限群的阶:群中元素个数,记作 ∣ G ∣ |G| G.

cayley表,通过检索,表中a行和b列的元素c,这个过程可看作映射 f : ( a , b ) → c f:(a,b)\rightarrow c f:(a,b)c.

1.10定理:若 H H H G G G的一个子群, G G G上的关系 R H R_H RH定义为 ( a , b ) ∈ R H (a,b)\in R_H (a,b)RH    ⟺    a = b h , ∃ h ∈ H \iff a=bh,\exist h\in H a=bhhH 是等价关系.
【证明:
等价关系 R H R_H RH称为 H H H的左陪集。同其他等价关系一样,它将 G G G划分为非空的,不相交的子集。这些子集(等价类)称为 G 模 H G模H GH的左陪集,表示为 a H = a h : h ∈ H aH={ah:h\in H} aH=ah:hH或( a + H = { a + h : h ∈ H } a+H=\{a+h:h\in H\} a+H={a+h:hH}G中运算记为加法)。这里 a a a G G G中某一个固定的元。相似地, G G G可以分解称模 H H H的右陪集。若 G G G是一个交换群,则模 H H H的左右陪集相等。

1.11例子:
G = Z 12 , H = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] ] } G=\mathbb Z_{12},H=\{[0],[3],[6],[9]]\} G=Z12,H={[0],[3],[6],[9]]},则不同的 G 模 H G模H GH的左陪集如下:
  [ 0 ] + H = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] } ,   [ 1 ] + H = { [ 1 ] , [ 4 ] , [ 7 ] , [ 10 ] } ,   [ 2 ] + H = { [ 2 ] , [ 5 ] , [ 8 ] , [ 11 ] } \\\ [0]+H=\{[0],[3],[6],[9]\} , \\\ [1]+H=\{[1],[4],[7],[10]\},\\\ [2]+H=\{[2],[5],[8],[11]\}  [0]+H={[0],[3],[6],[9]}, [1]+H={[1],[4],[7],[10]}, [2]+H={[2],[5],[8],[11]}

1.12定理:若 H H H G G G的有限子群,则 G G G H H H每个左(右)陪集,中的元素与 H H H中相同,

1.13定义: G G G的子群 H H H只产生有限个 G G G H H H的左陪集,则陪集的数量称为 H H H G G G上的指数,记为j。
因为,左陪集来自对 G G G的划分,定理1.12暗含以下结论。

1.14定理:有限群 G G G ∣ G ∣ = ∣ H ∣ ⋅ j |G|=|H|\cdot j G=Hj,且 ∣ H ∣ |H| H整除 ∣ G ∣ |G| G,且 a ∈ G , ∣ a ∣ 整除 ∣ G ∣ a\in G,|a|整除|G| aG,a整除G
【证明, G G G中任一元a的阶整除 G G G的阶.
< a > <a> <a> G G G中元 a a a的生成子群。又子群的阶整除G的阶。

1.15定理:
(i)循环群的子群是循环群;
(ii)有限循环群 < a > <a> <a>的阶是m,元 a k a^k ak生成的一个子群阶为 m / gcd ( k , m ) m/\text {gcd}(k,m) m/gcd(k,m)
【证明: a m = e a^m=e am=e a k a^k ak的阶为n,d=gcd(k,m).要证n=m/d
( a k ) n = e , ( a k ) n = a ( k n ) , 则 m ∣ k n ,又 d ∣ m , d ∣ k , 则 m / d ∣ k n / d ,又 m / d 与 k / d 互素,则 m / d ∣ n . (a^k)^n=e,(a^k)^n=a^{(kn)},则m|kn,又d|m,d|k,则m/d|kn/d,又m/d与k/d 互素,则m/d|n. (ak)n=e,(ak)n=a(kn),mkn,又dm,dk,m/dkn/d,又m/dk/d互素,则m/dn.n是满足条件最小的正整数。故n=m/d

(iii)令一有限循环群 < a > <a> <a>阶为 m m m d d d m m m的因子,则 < a > <a> <a>有且只有一个指数为 d d d的子群。任意正整数 f f f m m m的因子, < a > <a> <a>有且只有一个阶为f的子群。
【证明:


(iv)令f是一有限循环群 < a > <a> <a>阶的正因子,则 < a > <a> <a> ϕ ( f ) \phi(f) ϕ(f)个阶为f的元, ϕ ( f ) \phi(f) ϕ(f)是欧拉数满足条件 n , s t , 1 ≤ n ≤ f n,st,1\le n\le f n,st,1nf,且n和f互素,n的个数。
(v)一个有限循环群 < a > <a> <a>阶为m,其有 ϕ ( m ) \phi(m) ϕ(m)个生成元,即元 a r , s t , < a r > = < a > a^r,st,<a^r>=<a> ar,st,<ar>=<a>。这些生成元是 a r , 且gcd ( r , m ) . a^r,且\text{gcd}(r,m). ar,gcd(r,m).

1.16定义:从群 G G G到群 H H H的映射 f : G → H f:G\rightarrow H f:GH,若映射 f f f保持在 G G G下的运算,称 f f f G G G H H H的同构映射。即,若 ∗ , ⋅ \ast,\cdot ,分别为 G G G H H H的代数运算,若 ∀ a , b ∈ G , s t , f ( a ∗ b ) = f ( a ) ⋅ f ( b ) \forall a,b\in G,st,f(a\ast b)=f(a)\cdot f(b) a,bG,st,f(ab)=f(a)f(b),则称 f f f保持 G G G下的运算。若在加法上, f f f是满射, f f f称为同态满射,并称 H H H G G G的同态满射的象。G到G的同态称为自同态。如果 f f f是G到H的一一映射,称 f f f是同构映射,称G与H同构,G到G的同构映射称为自同构

1.17(kernel)
核的定义:同态映射 f : G → H f:G\rightarrow H f:GH,将群G映射到H上,集合 ker f = { a ∈ G , f ( a ) = e ′ } . e ′ \text{ker} f=\{a\in G,f(a)=e'\}.e' kerf={aG,f(a)=e}.e H H H的单位元。
同态映射f,所有使象为单位元的原象构成的集合。

1.18例子:对同态映射 f : Z → Z n , f ( a ) = [ a ] ,ker f = < n > f:\mathbb Z\rightarrow \mathbb Z_n,f(a)=[a],\text {ker} f=<n> f:ZZn,f(a)=[a]kerf=<n>., < n > <n> <n>是群 Z \mathbb Z Z由n生成的子群。
容易验证, ker f \text {ker}f kerf总是G的子群。此外, ker f \text{ker} f kerf有一个特殊的性质, ∀ a ∈ G , b ∈ ker f , ⇒ , a b a − 1 ∈ ker f \forall a\in G,b\in \text{ker}f,\Rightarrow,aba^{-1}\in \text{ker}f aG,bkerf,,aba1kerf.

这引出了接下来的概念。
1.19定义:若 a h a − 1 ∈ H , ∀ a ∈ G , h ∈ H aha^{-1}\in H,\forall a\in G,h\in H aha1H,aG,hH, G G G的子群 H H H称为 G G G的不变子群。
每一个交换子群都是不变子群,因为 a h a − 1 = a a − 1 h = e h = h ∈ H aha^{-1}=aa^{-1}h=eh=h\in H aha1=aa1h=eh=hH.
下面我们将阐述不变子群的一些其他表达。

1.20定理:
(i) G G G的子群 H H H是规范(不变)子群    ⟺    H \iff H H等于它的共轭类或    ⟺    H \iff H H是不变的在G的所有内自同构下。???
(ii) G G G的子群 H H H是规范(不变)子群 ⇔ \Leftrightarrow 左陪集 a H = aH= aH=右陪集 H a , ∀ a ∈ G Ha,\forall a\in G Ha,aG
不变子群的一个重要特点是,陪集的集合可以构成群结构。

1.21定理:如果 H H H G G G的不变子群,则GmodH的左陪集构成群,运算为 ( a H ) ( b H ) = ( a b ) H (aH)(bH)=(ab)H (aH)(bH)=(ab)H.
1.22定义:
G G G的不变子群 H H H, G G G H H H的左陪集在1.21定义的运算下构成群,称为 G mod H G\text{mod}H GmodH的商群(因子群),表示为 G / H G/H G/H

2 Ring and Fields

在大多数初等代数的代数系统中,有两种不同的二元运算:加法和乘法。如整数、有理数、实数。现在定义一种叫作环的代数结构和上面这些代数系统有相同的性质。
1.28环的定义: 记为 r i n g ( R , + , ⋅ ) ring (R,+,\cdot) ring(R,+,)
集合 R R R,和集合上的两种二元运算,使得
1) R R R是一个加群;2)乘法结合律;3)两种分配律,成立。
我们用R表示环 ( R , + , ⋅ ) (R,+,\cdot) (R,+,),并强调二元运算 + , ⋅ +,\cdot +,,不一定是数上的一般运算。在下面的约定中,我们用0(称为零元)表示加群的单位元,并用 − a -a a表示加法的逆元,并将 a + ( − b ) a+(-b) a+(b)缩写为 a − b a-b ab。通常用 a b ab ab表示 a ⋅ b a\cdot b ab,根据环的定义,得到一般性质, a 0 = 0 a = 0 ∀ a ∈ R . a0=0a=0\forall a\in R. a0=0a=0∀aR.对应的, ( − a ) b = a ( − b ) = − a b , ∀ a , b ∈ R (-a)b=a(-b)=-ab,\forall a,b\in R (a)b=a(b)=ab,a,bR.
环的最自然的例子是也许是普通整数构成的环,若我们验证环的性质,会发现它有一般环所不具有的性质,因此,环可以根据下面的定义进行分类。

1.29定义:
(i)有单位元的环的定义:环中有一个乘法单位元,即 ∃ e ∈ R , s t , a e = e a = a , ∀ a ∈ R \exist e\in R,st,ae=ea=a,\forall a\in R eR,st,ae=ea=a,aR
(ii)交换环(commutative ring):若环中乘法符合交换律;
(iii)整环(integral domain)的定义:有单位元的、无零因子的、交换的,环;
(iv)除环(division ring)的定义: R R R中的非零元构成群,称乘群;
(v)域(field)的定义:交换除环称为域。
因为我们主要研究域,再次强调这一观点。首先,一个域是集合 F F F和定义在集合上的两个二元运算,称加法和乘法,并定义了两个不同的元0(零元)和1(单位元)且 0 ≠ e \text 0\ne e 0=e。加法和乘法这两种运算通过分配律 a ( b + c ) = a b + a c , ( b + c ) a = b a + c a a(b+c)=ab+ac,(b+c)a=ba+ca a(b+c)=ab+ac,(b+c)a=ba+ca联系在一起。第二个分配律是由乘法的交换性自然的得出的。此后,乘法单位元通常表示为1.
一个域没有零因子,因为若 a b = 0 且 a ≠ 0 , ⇒ 由 a − 1 产生 b = a − 1 0 = 0 ab=0且a\ne 0,\Rightarrow 由a^{-1}产生b=a^{-1}0=0 ab=0a=0,a1产生b=a10=0

为了说明环概念的一般性,以下展示了一些例子。
1.30例子:
(i)令R是一个交换群,加法运算+。定义 a b = 0 , ∀ a , b ∈ R ab=0,\forall a,b\in R ab=0,a,bR,则R是一个环。
【证明:环四条(加群、乘法封闭、乘法结合、两分配律)。
由已知,加群成立;乘法运算结果都为0,乘法封闭; ( a b ) c = a ( b c ) = 0 , 乘法结合; a ( b + c ) = a b + a c = 0 , ( b + c ) a = b a + c a = 0 , 两分配律成立 (ab)c=a(bc)=0,乘法结合;a(b+c)=ab+ac=0,(b+c)a=ba+ca=0,两分配律成立 (ab)c=a(bc)=0,乘法结合;a(b+c)=ab+ac=0,(b+c)a=ba+ca=0,两分配律成立,得证。

(ii)整数构成一个整环,但不是域。
【证明:环四条+有非零元+有单位元+非零元有逆+乘法交换。
显然,整数集合是一个整环。但除 ± 1 \pm 1 ±1 外元没有逆元。

(iii)偶数构成一个没有单位元的交换环。
【证明:环四条+无单位元+乘法交换律。
显然。】
(iv)实数到实数的函数构成一个交换环,两运算定义为 ( f + g ) ( x ) = f ( x ) + g ( x ) , ( f g ) ( x ) = f ( x ) g ( x ) , x ∈ R (f+g)(x)=f(x)+g(x),(fg)(x)=f(x)g(x),x\in R (f+g)(x)=f(x)+g(x),(fg)(x)=f(x)g(x),xR
【证明:
加群:加法封闭 ( f + g ) ( x ) = f ( x ) + g ( x ) (f+g)(x)=f(x)+g(x) (f+g)(x)=f(x)+g(x),实数+实数=实数;加法结合 ( ( f + g ) + h ) ( x ) = ( f + g ) ( x ) + h ( x ) = f ( x ) + g ( x ) + h ( x ) = ( f + ( g + h ) ) ( x ) ((f+g)+h)(x)=(f+g)(x)+h(x)=f(x)+g(x)+h(x)=(f+(g+h))(x) ((f+g)+h)(x)=(f+g)(x)+h(x)=f(x)+g(x)+h(x)=(f+(g+h))(x);零元0;负元, f ( x ) + f ( − x ) = f ( − x ) + f ( x ) = 0 f(x)+f(-x)=f(-x)+f(x)=0 f(x)+f(x)=f(x)+f(x)=0;加法交换 ( f + g ) ( x ) = f ( x ) + g ( x ) = g ( x ) + f ( x ) = ( g + f ) ( x ) (f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x) (f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x).
乘法封闭 f g ( x ) = f ( x ) g ( x ) , 实数 ⋅ 实数 = 实数 fg(x)=f(x)g(x),实数\cdot 实数=实数 fg(x)=f(x)g(x),实数实数=实数
乘法结合 ( ( f g ) h ) ( x ) = ( f g ) ( x ) h ( x ) = f ( x ) g ( x ) h ( x ) = ( f ( g h ) ) ( x ) ((fg)h)(x)=(fg)(x)h(x)=f(x)g(x)h(x)=(f(gh))(x) ((fg)h)(x)=(fg)(x)h(x)=f(x)g(x)h(x)=(f(gh))(x);
乘法交换 f g ( x ) = f ( x ) g ( x ) = g ( x ) f ( x ) = g f ( x ) fg(x)=f(x)g(x)=g(x)f(x)=gf(x) fg(x)=f(x)g(x)=g(x)f(x)=gf(x).

(v)实数域上的2阶矩阵构成,有单位元的非交换环,运算即矩阵加法和乘法。

我们可以看到一个域是一个整环,在一般情况下不正确,反过来,在有限元素的情况下成立,如下。
1.31定理:每个有限整环都是一个域。
【证明:需证明,有非零元,非零元有逆。
整环有单位元1,显然整环有非零元。
令有限整环的元素为 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an.对一个非零元 a ∈ R a\in R aR,考虑乘积 a a 1 . a a 2 , ⋯   , a a n aa_1.aa_2,\cdots, aa_n aa1.aa2,,aan。若 a a i = a a j , 则 a ( a i − a j ) = 0 , 由于 a ≠ 0 , 整环无零因子,则 a i − a j = 0 , 即 a i = a j ,逆否命题为 a i ≠ a j ⇒ a a i ≠ a a j ,故 a a 1 , a a 2 , ⋯   , a a n 为 n 个不同的元,而 a a i ∈ R ,故 { a 1 , a 2 , ⋯   , a n } = { a a 1 , a a 2 , ⋯   , a a n } ,每个元都可以写成 a a i 的形式故单位元 e = a a i , i ∈ {   1 , 2 , ⋯   , n } ,故每一个非零元 a ∈ R 都可以找到乘法逆元 a i aa_i=aa_j,则a(a_i-a_j)=0,由于a\ne 0,整环无零因子,则a_i-a_j=0,即a_i=a_j,逆否命题为a_i\ne a_j\Rightarrow aa_i\ne aa_j,故aa_1,aa_2,\cdots,aa_n为n个不同的元,而aa_i\in R,故\left\{a_1,a_2,\cdots,a_n\right\}=\left\{aa_1,aa_2,\cdots,aa_n\right\},每个元都可以写成aa_i的形式故单位元e=aa_i,i\in\left\{\ 1,2,\cdots,n\right\},故每一个非零元a\in R 都可以找到乘法逆元a_i aai=aaj,a(aiaj)=0,由于a=0,整环无零因子,则aiaj=0,ai=aj,逆否命题为ai=ajaai=aaj,故aa1,aa2,,aann个不同的元,而aaiR,故{a1,a2,,an}={aa1,aa2,,aan},每个元都可以写成aai的形式故单位元e=aai,i{ 1,2,,n},故每一个非零元aR都可以找到乘法逆元ai ,
又因为R是交换的,有 a i a = e a_ia=e aia=e,故 a i a_i ai是a的乘法逆元。
因此, R R R的非零元构成一个交换群,故R是一个域。

1.32子环的定义:环 R R R的一个子集 S S S,在环 R R R + , ⋅ +,\cdot +,运算下封闭,则称 S S S R R R的子环。

1.33理想的定义:环 R R R的一个子集 J J J,若 J J J是一个子环且 ∀ a ∈ J , r ∈ R \forall a\in J,r\in R aJ,rR使得 a r ∈ J , r a ∈ J ar\in J,ra\in J arJ,raJ,则称 J J J R R R的理想。

1.34例子:
(i)令 R \mathbb R R是有理数域 Q \mathbb Q Q,则整数集合 Z \mathbb Z Z Q \mathbb Q Q的子环,但不是一个理想。如 1 ∈ Z , 1 / 2 ∈ Q 1\in \mathbb Z,1/2\in \mathbb Q 1Z,1/2Q但, 1 / 2 ⋅ 1 = 1 / 2 ∉ Z 1/2 \cdot 1=1/2\notin \mathbb Z 1/21=1/2/Z
(ii)令 R R R是交换环,令 a ∈ R a\in R aR J = { r a : r ∈ R } J=\left\{ra:r\in R\right\} J={ra:rR},则 J J J是一个理想。
【证明:(1)J是R的子环,根据子环的判定定理,需证 a , b ∈ S ⇒ a − b ∈ S , a b ∈ S a,b\in S \Rightarrow a-b\in S,ab\in S a,bSabS,abS.
l 1 = r 1 a , l 2 = r 2 a , l 1 , l 2 ∈ J , r 1 , r 2 ∈ R , l 1 − l 2 = ( r 1 a − r 2 a ) = ( r 1 − r 2 ) a , 由于 R 是环,则 ( r 1 − r 2 ) ∈ R ,故 ( r 1 − r 2 ) a ∈ J . l 1 l 2 = r 1 a r 2 a 由于 R 是交换环,左式 = r 1 r 2 a a = ( r 1 r 2 a ) a ,而 ( r 1 r 2 a ) ∈ R , 故 ( r 1 r 2 a ) a ∈ J l_1=r_1a,l_2=r_2a,l_1,l_2\in J,r_1,r_2\in R,l_1-l_2=(r_1a-r_2a)=(r_1-r_2)a,由于R是环,则(r_1-r_2)\in R,故(r_1-r_2)a\in J.\\l_1l_2=r_1ar_2a由于R是交换环,左式=r_1r_2aa=(r_1r_2a)a,而(r_1r_2a)\in R,故(r_1r_2a)a\in J l1=r1a,l2=r2a,l1,l2J,r1,r2R,l1l2=(r1ar2a)=(r1r2)a,由于R是环,则(r1r2)R,故(r1r2)aJ.l1l2=r1ar2a由于R是交换环,左式=r1r2aa=(r1r2a)a,而(r1r2a)R,(r1r2a)aJ.
(2)证明子环J是R的理想,需证明 ∀ a ∈ J , r ∈ R \forall a\in J,r\in R aJ,rR使得 a r ∈ J , r a ∈ J ar\in J,ra\in J arJ,raJ.
由于R是交换环,令 ∀ r ∈ R , j ∈ J ⊂ R , r j = j r ∈ R ,又由( 1 ) r j ∈ J . \forall r\in R,j\in J\subset R,rj=jr \in R,又由(1)rj\in J. rR,jJR,rj=jrR,又由(1rjJ.】得证。
(iii)令 R R R是一个交换环,给定一个元素a最小的理想

1.35主理想的定义:令 R R R是一个交换环。当 R R R中一个元a使得 J = ( a ) J=(a) J=(a),则称 J J J是元a生成的主理想。
【证明:因为理想是环的加法群的不变子群,因此,环R的理想J定义了不相交陪集的划分,称为模J的剩余类。R模J的元a 的剩余类表示为 [ a ] = a + J [a]=a+J [a]=a+J.因为它由所有形如 a + c , a ∈ R , c ∈ J a+c,a\in R,c\in J a+c,aR,cJ的元组成。

1.47定理:令 R R R是一个有单位元的交换环。则
(i)R的一个理想M是一个最大理想    ⟺    R / M \iff R/M R/M是一个域。
(ii)
(iii)
(iv)

3多项式环

在初等代数多项式形如 a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n a_0+a_1x+a_2x^2+\cdots+a_nx^n a0+a1x+a2x2++anxn. a i a_i ai称为系数,且通常是实数或复数, x x x看做变量,即用 α \alpha α代替任意数 x x x,得到一个良定义的数 a 0 + a 1 α + a 2 α 2 + ⋯ + a n α n a_0+a_1\alpha+a_2\alpha^2+\cdots+a_n\alpha^n a0+a1α+a2α2++anαn.多项式的算术有熟悉的法则。多项式的概念和相关运算可以推广到常见的代数集合。
R R R是一个任意环。环 R R R上的一个多项式,形如 f ( x ) = ∑ i = 0 n a i x i = a 0 + a 1 x + ⋯ + a n x n f(x)=\sum\limits _{i=0}^n a_ix^i=a_0+a_1x+\cdots+a_nx^n f(x)=i=0naixi=a0+a1x++anxn, n n n是非负整数,系数 a i , 0 ≤ i ≤ n a_i,0\le i\le n ai,0in,是 R R R中元素,且 x x x是一个文字,不属于 R R R,称 R R R上的一个未定元。只要清楚未定元指什么,就可以用 f f f作为多项式 f ( x ) f(x) f(x)

1.48多项式环的定义: R R R上的多项式和运算构成的环,称为 R R R上的多项式环,表示为 R [ x ] R[x] R[x].
R [ x ] R[x] R[x]中的零元,是系数全为0的多项式,称为零多项式,表示为0。通过上下文,可以清晰的判断0代表 R R R中的零元还是 R [ x ] R[x] R[x]的零多项式。
1.49定义:令 f ( x ) = ∑ i = 0 n a i x i f(x)=\sum\limits _{i=0}^n a_ix^i f(x)=i=0naixi R R R上的一个非零多项式,则 a n ≠ 0 a_n\ne 0 an=0. a n a_n an f ( x ) f(x) f(x)的首项系数, a 0 a_0 a0是常数项, n n n f ( x ) f(x) f(x)的阶, n = deg ( f ( x ) ) = deg ( f ) n=\text{deg}(f(x))=\text{deg}(f) n=deg(f(x))=deg(f).0的阶看作 − ∞ -\infty , deg ( 0 ) = − ∞ \text{deg}(0)=-\infty deg(0)=.阶 ≤ 0 \le 0 0的多项式,称常数多项式。若 R R R有单位元1且 f ( x ) f(x) f(x)的最高项是1,则称 f ( x ) f(x) f(x)是首1多项式。

通过计算两多项式首项系数的和和乘积,得到以下结果。
1.50定理:令 f , g ∈ R [ x ] f,g\in R[x] f,gR[x],则
deg ( f + g ) ≤ max ( deg ( f ) , deg ( g ) ) deg ( f g ) ≤ deg ( f ) + deg ( g ) \text {deg} (f+g)\le \text {max} (\text {deg}(f),\text {deg}(g))\\ \text {deg} (fg)\le \text {deg}(f)+\text {deg}(g) deg(f+g)max(deg(f),deg(g))deg(fg)deg(f)+deg(g)
R R R是一个整环,则
deg ( f g ) = deg ( f ) + deg ( g ) \text{deg}(fg)=\text{deg}(f)+\text{deg}(g) deg(fg)=deg(f)+deg(g)
如果常数多项式,常数属于 R R R,则 R R R可被看作 R [ x ] R[x] R[x]的子环。R中的一些性质可以传递到 R [ x ] R[x] R[x]中。

1.51定理:令 R R R是一个环,则
(i) R [ x ] R[x] R[x]是交换的    ⟺    \iff R R R是交换的。
(ii) R [ x ] R[x] R[x]是一个有单位元的环    ⟺    \iff R R R有单位元。
(iii) R [ x ] R[x] R[x]是一个整环    ⟺    R \iff R R是一个整环。

后面的章节我们将几乎专门讨论域上的多项式。令 F F F表示一个域(不一定是有限的)。整除性的概念,当专门化到环 F [ x ] F[x] F[x]时。一个多项式 g ∈ F [ x ] g\in F[x] gF[x]整除多项式 f ∈ F [ x ] f\in F[x] fF[x]如果存在多项式 h ∈ F [ x ] h\in F[x] hF[x]使得 f = g h f=gh f=gh.我们也称 g g g f f f的除数,或 f f f g g g的倍数,或 f f f整除 g g g. F [ x ] F[x] F[x]的单位元是常数多项式1的因子,而常数多项式恰是所有非零常数多项式。

对于整数环,域上的多项式环存在一个带余除法。
1.52定理(Division Algorithm):令 g ≠ 0 g\ne0 g=0是一个 F [ x ] F[x] F[x]的多项式,则 ∀ f ∈ F [ x ] , ∃ q , r ∈ F [ x ] \forall f\in F[x],\exist q,r\in F[x] fF[x],q,rF[x]使得 f = q g + r , deg ( r ) ≤ deg ( g ) f=qg+r,\text{deg}(r)\le \text{deg}(g) f=qg+r,deg(r)deg(g)

4 域的扩张

F F F是一个域。 F F F的一个子集 K K K F F F的代数运算下构成一个域,称 K K K F F F的子域。在此背景下,称 F F F K K K的扩张或扩域。若 K ≠ F K\ne F K=F, K K K F F F的真子域。
K K K是一个有限域 F p \mathbb F_p Fp的子域, p p p是素数,则 K K K一定有0和1元,且 F p \mathbb F_p Fp的所有元都是由 K K K在加法下封闭构成的。
F p \mathbb F_p Fp没有真子域,引出下面的概念。
1.77定义:一个域没有真子域,称为素域。

Chapter 2 Structure of Finite Fields

这一章非常重要,包含了有限域的各种基础知识和一种构造有限域的方法。
模素数的整数域是有限域中最常见的例子,它的许多性质可以扩展到任意有限域。有限域的特征(第一章中)表明,每个有限域都是素数次阶的,反之对于每一个素数阶存在一个有限域使它的元素个数恰好是这个素数。此外,具有相同元素的有限域是同构的,因此是可以完全区分的。接下来的两节,提供了不可约多项式根的信息,引出了将有限域解释为不可约多项式分裂域,以及迹、范数和与扩张的相关基的信息。
第4节从一般场论的观点来处理统一的根源,这在第6节和第5章偶尔会需要。 第5节介绍了表示有限域元素的不同方法。 第六节给出了著名的Wedderburn定理的两个证明,根据该定理,每个有限除环都是域。
本章许多论述,将在后面章节中继续并部分概括。
1 Characterization of Finite Fields
2.1引理。令F是一个有限域且包含一个子域K,K有 q q q个元。则F有 q m q^m qm个元,这里 m = [ F : K ] m=[F:K] m=[F:K].
【证明:

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值