1.群
(二元)运算:非空集合S,使得S×S映射到S上。
从整数集合的两种运算,可以推广到任意集合的运算。一个代数结构或代数系统是指一个集合和其上的代数运算。
初等算术中有两种运算:加法和乘法;其中两种运算符合结合律是最重要的一条性质。在各种有一个运算符合结合律代数系统中,群是发展和研究最广泛的。群理论是抽象代数中最古老和应用丰富的部分。
1.1群的定义
集合S和定义的二元运算(封闭)满足以下性质:
1)结合律;st,a(bc)=(ab)c
2)有单位元e;st,ae=ea=a
3)任一元有逆元a-1;st,a-1a=aa-1=e
交换群,指运算满足交换律的群。
/容易验证:单位元与逆元唯一确定。
令e1、e都为单位元,e1=e1e=e,即有唯一单位元。
令a‘,a’‘都为元a 的逆元,a"=(a’a)a’‘=a’(aa’‘)=a’,即有唯一单位元。
此外,定义(ab)-1=b-1a-1.
结合律保证, a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an唯一确定。
/
1.2例子
1)整数加群:集合 Z \mathbb {Z} Z,定义运算整数加法
2)单位元群:集合{e},定义运算ee=e;
3)模n的剩余类加群:集合{[0],[1],…,[n-1]} ,定义运算[a]+[b]=[a+b].
这些例子映出了一种有趣的群,每一个元素都是某一个元素的幂方。
1.3循环群的定义
当且仅当群中任一元素是是某一固定元素的幂方。这个固定的元称循环群的生成元,记作群 G = < a > G=<a> G=<a>
1.4同余的定义:congruent
a a a is congruent to b b b modulo n, write a ≡ b mod n a \equiv b \text {mod} n a≡bmodn, 若差 a − b a-b a−b是 n n n的倍数,即 a = b + k n , k ∈ Z a=b+kn,k\in \mathbb{Z} a=b+kn,k∈Z.
”模n同余“是等价关系,
1.5整数模n的群定义:形如 { [ 0 ] , [ 1 ] , ⋯ , [ n − 1 ] } \{[0],[1],\cdots,[n-1]\} {[0],[1],⋯,[n−1]}模n的等价类,在 [ a ] + [ b ] = [ a + b ] [a]+[b]=[a+b] [a]+[b]=[a+b]的运算下。记作 Z n \mathbb Z_n Zn
Z n \mathbb Z_n Zn实际上是一个循环群,等价类 [ 1 ] [1] [1]是生成元,且群的阶为n。
1.6阶的定义:
有限群的阶:群中元素个数,记作 ∣ G ∣ |G| ∣G∣.
cayley表,通过检索,表中a行和b列的元素c,这个过程可看作映射 f : ( a , b ) → c f:(a,b)\rightarrow c f:(a,b)→c.
1.10定理:若 H H H是 G G G的一个子群, G G G上的关系 R H R_H RH定义为 ( a , b ) ∈ R H (a,b)\in R_H (a,b)∈RH ⟺ a = b h , ∃ h ∈ H \iff a=bh,\exist h\in H ⟺a=bh,∃h∈H 是等价关系.
【证明:
等价关系 R H R_H RH称为 H H H的左陪集。同其他等价关系一样,它将 G G G划分为非空的,不相交的子集。这些子集(等价类)称为 G 模 H G模H G模H的左陪集,表示为 a H = a h : h ∈ H aH={ah:h\in H} aH=ah:h∈H或( a + H = { a + h : h ∈ H } a+H=\{a+h:h\in H\} a+H={
a+h:h∈H}G中运算记为加法)。这里 a a a是 G G G中某一个固定的元。相似地, G G G可以分解称模 H H H的右陪集。若 G G G是一个交换群,则模 H H H的左右陪集相等。
】
1.11例子:
令 G = Z 12 , H = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] ] } G=\mathbb Z_{12},H=\{[0],[3],[6],[9]]\} G=Z12,H={[0],[3],[6],[9]]},则不同的 G 模 H G模H G模H的左陪集如下:
[ 0 ] + H = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] } , [ 1 ] + H = { [ 1 ] , [ 4 ] , [ 7 ] , [ 10 ] } , [ 2 ] + H = { [ 2 ] , [ 5 ] , [ 8 ] , [ 11 ] } \\\ [0]+H=\{[0],[3],[6],[9]\} , \\\ [1]+H=\{[1],[4],[7],[10]\},\\\ [2]+H=\{[2],[5],[8],[11]\} [0]+H={[0],[3],[6],[9]}, [1]+H={[1],[4],[7],[10]}, [2]+H={[2],[5],[8],[11]}
1.12定理:若 H H H是 G G G的有限子群,则 G G G模 H H H每个左(右)陪集,中的元素与 H H H中相同,
1.13定义: G G G的子群 H H H只产生有限个 G G G模 H H H的左陪集,则陪集的数量称为 H H H在 G G G上的指数,记为j。
因为,左陪集来自对 G G G的划分,定理1.12暗含以下结论。
1.14定理:有限群 G G G, ∣ G ∣ = ∣ H ∣ ⋅ j |G|=|H|\cdot j ∣G∣=∣H∣⋅j,且 ∣ H ∣ |H| ∣H∣整除 ∣ G ∣ |G| ∣G∣,且 a ∈ G , ∣ a ∣ 整除 ∣ G ∣ a\in G,|a|整除|G| a∈G,∣a∣整除∣G∣。
【证明, G G G中任一元a的阶整除 G G G的阶.
< a > <a> <a>是 G G G中元 a a a的生成子群。又子群的阶整除G的阶。
】
1.15定理:
(i)循环群的子群是循环群;
(ii)有限循环群 < a > <a> <a>的阶是m,元 a k a^k ak生成的一个子群阶为 m / gcd ( k , m ) m/\text {gcd}(k,m) m/gcd(k,m);
【证明: a m = e a^m=e am=e令 a k a^k ak的阶为n,d=gcd(k,m).要证n=m/d
( a k ) n = e , ( a k ) n = a ( k n ) , 则 m ∣ k n ,又 d ∣ m , d ∣ k , 则 m / d ∣ k n / d ,又 m / d 与 k / d 互素,则 m / d ∣ n . (a^k)^n=e,(a^k)^n=a^{(kn)},则m|kn,又d|m,d|k,则m/d|kn/d,又m/d与k/d 互素,则m/d|n. (ak)n=e,(ak)n=a(kn),则m∣kn,又d∣m,d∣k,则m/d∣kn/d,又m/d与k/d互素,则m/d∣n.n是满足条件最小的正整数。故n=m/d
】
(iii)令一有限循环群 < a > <a> <a>阶为 m m m, d d d是 m m m的因子,则 < a > <a> <a>有且只有一个指数为 d d d的子群。任意正整数 f f f为 m m m的因子, < a > <a> <a>有且只有一个阶为f的子群。
【证明:
若
】
(iv)令f是一有限循环群 < a > <a> <a>阶的正因子,则 < a > <a> <a>又 ϕ ( f ) \phi(f) ϕ(f)个阶为f的元, ϕ ( f ) \phi(f) ϕ(f)是欧拉数满足条件 n , s t , 1 ≤ n ≤ f n,st,1\le n\le f n,st,1≤n≤f,且n和f互素,n的个数。
(v)一个有限循环群 < a > <a> <